Net wor k Wor ki ng G oup J. Franks

Request for Comments: 2617 Nort hwestern University

bsol etes: 2069 P. Hal | am Baker

Cat egory: Standards Track Verisign, Inc
J. Hostetler

Abi Source, Inc.

S. Lawrence

Agranat Systens, Inc.

P. Leach

M crosoft Corporation

A. Luot onen

Net scape Conmmuni cati ons Corporation
L. Stewart

Open Market, Inc.

June 1999

HTTP Aut hentication: Basic and Di gest Access Authentication

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (1999). All R ghts Reserved.

Abst r act

"HTTP/ 1.0", includes the specification for a Basic Access

Aut henti cation scheme. This scheme is not considered to be a secure
met hod of user authentication (unless used in conjunction with some
external secure systemsuch as SSL [5]), as the user nanme and
password are passed over the network as cleartext.

Thi s docunment al so provides the specification for HITP s

aut hentication framework, the original Basic authentication schene
and a scheme based on cryptographic hashes, referred to as "D gest
Access Authentication". It is therefore also intended to serve as a
repl acenent for RFC 2069 [6]. Sone optional elenents specified by
RFC 2069 have been renoved fromthis specification due to problens
found since its publication; other new el enents have been added for
compatibility, those new el ements have been made optional, but are
strongly recomended.

Franks, et al. St andards Track [Page 1]

RFC 2617 HTTP Aut henti cati on June 1999

Li ke Basic, Digest access authentication verifies that both parties
to a comunication know a shared secret (a password); unlike Basic,
this verification can be done w thout sending the password in the
clear, which is Basic's biggest weakness. As with nost other

aut henti cation protocols, the greatest sources of risks are usually
found not in the core protocol itself but in policies and procedures
surrounding its use.

Tabl e of Contents

1 Access Authentication............. 3
1.1 Reliance on the HTTP/ 1.1 Specification............ 3
1.2 Access Authentication Framework................... 3

2 Basic Authentication Scheme.......................... 5

3 Di gest Access Authentication Scheme.................. 6
3.1 Introduction. 6

3. .l PUMPOSE. o e 6
3.1.2 Overall Operation......... ..., 6
3.1.3 Representation of digest values................. 7
3.1.4 Limtations. 7
3.2 Specification of Digest Headers................... 7
3.2.1 The WAV Aut henticate Response Header............ 8
3.2.2 The Authorization Request Header................ 11
3.2.3 The Authentication-Info Header.................. 15
3.3 Digest Operation.......... ... 17
3.4 Security Protocol Negotiation..................... 18
3.5 Exanpl e. . ..o 18
3.6 Pr oxy- Aut henti cati on and Proxy-Authorization...... 19

4 Security Considerations................c .. 19

4.1 Aut hentication of Cients using Basic

Authentication............ 19
4.2 Aut hentication of Cients using D gest

Authentication........... 20
4.3 Limted Use Nonce Values........... 21
4.4 Conparison of Digest with Basic Authentication.... 22
4.5 Replay Attacks....... ... i, 22
4.6 Weakness Created by Miltiple Authentication

Schemes. . .. 23
4.7 Online dictionary attacks............ 23

4.8 Man in the Mddle.......... 24
4.9 Chosen plaintext attacks.......................... 24
4.10 Preconputed dictionary attacks.................... 25
4.11 Batch brute force attacks......................... 25
4.12 Spoofing by Counterfeit Servers................... 25
4.13 Storing passwords. 26
4. 14 SUNMMMBI Y. ot e e e e 26

5 Sanple inplenentation............ 27

6 Acknowl edgment s. 31

Franks, et al. St andards Track [Page 2]

RFC 2617 HTTP Aut henti cati on June 1999

7 Ref erences. 31
8 Aut hors’ Addresses. 32
9 Ful | Copyright Statement............... 34

1 Access Aut hentication

1.1 Reliance on the HTTP/ 1.1 Specification

This specification is a conpanion to the HITP/ 1.1 specification [2].
It uses the augnented BNF section 2.1 of that docunent, and relies on
both the non-terninals defined in that docunent and other aspects of
the HTTP/ 1.1 specification.

1.2 Access Aut hentication Franework

HTTP provides a sinple chall enge-response authenticati on nechani sm
that MAY be used by a server to challenge a client request and by a
client to provide authentication information. It uses an extensible,
case-insensitive token to identify the authentication schene,

foll owed by a comma-separated |ist of attribute-value pairs which
carry the paraneters necessary for achieving authentication via that
schene.

t oken
token "=" (token | quoted-string)

aut h- schene
aut h- par am

The 401 (Unaut horized) response nessage is used by an origin server
to challenge the authorization of a user agent. This response MJST
i nclude a WAV Aut henti cate header field containing at |east one
chal | enge applicable to the requested resource. The 407 (Proxy

Aut henti cati on Required) response nessage is used by a proxy to
chal | enge the authorization of a client and MJST include a Proxy-
Aut henti cate header field containing at |east one chall enge
applicable to the proxy for the requested resource.

chall enge = auth-scheme 1*SP 1#aut h- param

Note: User agents will need to take special care in parsing the WWV
Aut henticate or Proxy-Authenticate header field value if it contains
nore than one challenge, or if nore than one WWV Aut henti cat e header
field is provided, since the contents of a challenge nmay itself
contain a comma-separated |ist of authentication paranmeters

The aut hentication paraneter realmis defined for all authentication
schenes:

"real it "=" real mval ue

guot ed-string

real m
real mval ue

Franks, et al. St andards Track [Page 3]

RFC 2617 HTTP Aut henti cati on June 1999

The real mdirective (case-insensitive) is required for al

aut henti cati on schenes that issue a challenge. The real mval ue
(case-sensitive), in conbination with the canonical root URL (the
absol uteURI for the server whose abs path is enpty; see section 5.1.2
of [2]) of the server being accessed, defines the protection space.
These realnms allow the protected resources on a server to be
partitioned into a set of protection spaces, each with its own

aut henti cation schene and/or authorizati on database. The real mval ue
is a string, generally assigned by the origin server, which may have
additional senmantics specific to the authentication schene. Note that
there may be nultiple challenges with the sane auth-schene but

di fferent real ns.

A user agent that wishes to authenticate itself with an origin
server--usually, but not necessarily, after receiving a 401
(Unaut hori zed) -- MAY do so by including an Authorization header field
with the request. A client that wishes to authenticate itself with a
proxy--usually, but not necessarily, after receiving a 407 (Proxy
Aut henti cati on Required)--MAY do so by including a Proxy-

Aut hori zation header field with the request. Both the Authorization
field value and the Proxy-Authorization field val ue consist of
credentials containing the authentication information of the client
for the real mof the resource being requested. The user agent MJST
choose to use one of the challenges with the strongest auth-schene it
under st ands and request credentials fromthe user based upon that
chal | enge

credentials = aut h-schene #aut h- param

Note that many browsers will only recognize Basic and will require
that it be the first auth-scheme presented. Servers should only
include Basic if it is mnimally acceptable.

The protection space determ nes the donmai n over which credentials can
be autonmatically applied. If a prior request has been authorized, the
sane credentials MAY be reused for all other requests wi thin that
protection space for a period of time determ ned by the

aut henti cation schene, paraneters, and/or user preference. Unless

ot herwi se defined by the authentication schenme, a single protection
space cannot extend outside the scope of its server

If the origin server does not wish to accept the credentials sent
with a request, it SHOULD return a 401 (Unauthorized) response. The
response MJST include a WNWVM Aut henti cate header field containing at

| east one (possibly new) challenge applicable to the requested
resource. If a proxy does not accept the credentials sent with a
request, it SHOULD return a 407 (Proxy Authentication Required). The
response MJUST include a Proxy-Authenticate header field containing a

Franks, et al. St andards Track [Page 4]

RFC 2617 HTTP Aut henti cati on June 1999

(possi bly new) challenge applicable to the proxy for the requested
resource.

The HTTP protocol does not restrict applications to this sinple

chal | enge-response nechani sm for access authentication. Additiona
mechani sms MAY be used, such as encryption at the transport |evel or
vi a message encapsul ati on, and with additional header fields

speci fying authentication information. However, these additiona
mechani sms are not defined by this specification

Proxi es MUST be conpletely transparent regardi ng user agent

aut hentication by origin servers. That is, they nust forward the
WANM Aut hent i cat e and Aut hori zati on headers untouched, and follow the
rules found in section 14.8 of [2]. Both the Proxy-Authenticate and
the Proxy-Aut horization header fields are hop-by-hop headers (see
section 13.5.1 of [2]).

2 Basic Authentication Schene

The "basic" authentication scheme is based on the nodel that the
client nmust authenticate itself with a user-1D and a password for
each realm The real mval ue shoul d be considered an opaque string
whi ch can only be conpared for equality with other realns on that
server. The server will service the request only if it can validate
the user-1D and password for the protection space of the Request-URI.
There are no optional authentication paramneters.

For Basic, the framework above is utilized as foll ows:

"Basi c" realm
"Basi c" basic-credentials

chal | enge
credentials

Upon recei pt of an unauthorized request for a URl within the
protection space, the origin server MAY respond with a challenge |ike
the foll ow ng:

WA Aut henti cat e: Basic real m="Wal | yWorl d"
where "Vl lyWrld" is the string assigned by the server to identify
the protection space of the Request-URI. A proxy nmay respond with the
same chal | enge using the Proxy-Authenticate header field.
To receive authorization, the client sends the userid and password,
separated by a single colon (":") character, within a base64 [7]
encoded string in the credentials.

basi c-credential s = base64- user-pass
base64- user-pass = <base64 [4] encodi ng of user-pass,

Franks, et al. St andards Track [Page 5]

RFC 2617 HTTP Aut henti cati on June 1999

except not linmited to 76 char/line>

user - pass = userid ":" password
userid = *<TEXT excluding ":">
password = *TEXT

Userids night be case sensitive.

If the user agent wi shes to send the userid "Al addi n" and password
"open sesame", it would use the follow ng header field:

Aut hori zation: Basic QAMhZGRpbj pvcGVul HNI c2Ft ZQ==

A client SHOULD assune that all paths at or deeper than the depth of
the last synbolic elenent in the path field of the Request-UR also
are within the protection space specified by the Basic real mval ue of
the current challenge. A client MAY preenptively send the
correspondi ng Aut hori zation header with requests for resources in
that space without receipt of another challenge fromthe server
Simlarly, when a client sends a request to a proxy, it may reuse a
userid and password in the Proxy-Authorization header field wthout
recei ving another challenge fromthe proxy server. See section 4 for
security considerations associated with Basic authentication

3 Digest Access Authentication Schene
3.1 Introduction
3.1.1 Purpose

The protocol referred to as "HTTP/ 1. 0" includes the specification for
a Basic Access Authentication schene[1]. That schene is not
considered to be a secure nmethod of user authentication, as the user
nane and password are passed over the network in an unencrypted form
This section provides the specification for a schene that does not
send the password in cleartext, referred to as "D gest Access

Aut henti cation".

The Digest Access Authentication schene is not intended to be a

compl ete answer to the need for security in the World Wde Wb. This
schene provides no encryption of nmessage content. The intent is
sinmply to create an access authentication nmethod that avoi ds the nost
serious flaws of Basic authentication

3.1.2 Overall Operation
Li ke Basic Access Authentication, the Digest schene is based on a

si mpl e chal | enge-response paradi gm The Di gest schene chal | enges
usi ng a nonce value. A valid response contains a checksum (by

Franks, et al. St andards Track [Page 6]

RFC 2617 HTTP Aut henti cati on June 1999

default, the MD5 checksum) of the usernane, the password, the given
nonce val ue, the HTTP nmethod, and the requested URI. In this way, the
password is never sent in the clear. Just as with the Basic schene,

t he usernane and password nust be prearranged in sonme fashion not
addressed by this docunent.

3.1.3 Representation of digest val ues

An optional header allows the server to specify the algorithmused to
create the checksumor digest. By default the MD5 algorithmis used
and that is the only algorithmdescribed in this docunent.

For the purposes of this document, an MD5 digest of 128 bits is
represented as 32 ASCI| printable characters. The bits in the 128 bit
di gest are converted fromnost significant to | east significant bit,
four bits at a time to their ASCI| presentation as follows. Each four
bits is represented by its famliar hexadecinal notation fromthe
characters 0123456789abcdef. That is, binary 0000 gets represented by
the character '0', 0001, by '1', and so on up to the representation
of 1111 as 'f’.

3.1.4 Limtations

The Di gest authentication scheme described in this docunment suffers
frommany known linitations. It is intended as a repl acenment for
Basi ¢ aut hentication and nothing nore. It is a password-based system
and (on the server side) suffers fromall the sane problens of any
password system |In particular, no provision is made in this protoco
for the initial secure arrangenent between user and server to
establish the user’s password.

Users and inpl enmentors should be aware that this protocol is not as
secure as Kerberos, and not as secure as any client-side private-key
schene. Nevertheless it is better than nothing, better than what is
commonly used with telnet and ftp, and better than Basic

aut henti cati on.

3.2 Specification of Digest Headers
The Digest Access Authentication schene is conceptually sinilar to
the Basic scheme. The formats of the nodified WWV Aut henti cate header

line and the Authorization header line are specified below In
addition, a new header, Authentication-Info, is specified.

Franks, et al. St andards Track [Page 7]

RFC 2617 HTTP Aut henti cati on June 1999

3.2.1 The WMWM Aut henti cate Response Header

If a server receives a request for an access-protected object, and an
acceptabl e Authorization header is not sent, the server responds wth
a "401 Unaut hori zed" status code, and a WAV Aut henti cate header as
per the franmework defined above, which for the digest schene is
utilized as foll ows:

chal | enge "Di gest" digest-challenge

1#(realm| [domain] | nonce

[opaque] |[stale] | [algorithm] |
[qgop-options] | [auth-paran])

di gest -chal | enge

domai n = "domain" "=" <"> UR (1*SP URl) <">

UR = absoluteURlI | abs_path

nonce = "nonce" "=" nonce-val ue

nonce-val ue = quoted-string

opaque = "opaque" "=" quoted-string

stal e = "stale" "=" ("true" | "false")

al gorithm = "algorithnm "=" ("MD5" | "MD5-sess" |
t oken)

gop-opti ons "qop" "=" <"> 1l#qgop-value <">

gop- val ue "auth" | "auth-int" | token
The meani ngs of the values of the directives used above are as
fol | ows:

real m
A string to be displayed to users so they know which usernanme and
password to use. This string should contain at |east the nane of
the host performng the authentication and might additionally
i ndicate the collection of users who nmight have access. An exanple
m ght be "regi stered_users@ot ham news. cont'.

domai n
A quot ed, space-separated list of URIs, as specified in RFC XURI
[7], that define the protection space. |If a URI is an abs_path, it
is relative to the canonical root URL (see section 1.2 above) of
the server being accessed. An absoluteURl in this list may refer to
a different server than the one being accessed. The client can use
this list to deternmine the set of URIs for which the sane
aut hentication informati on may be sent: any URI that has a URI in
this list as a prefix (after both have been made absol ute) may be
assuned to be in the same protection space. If this directive is
omtted or its value is enpty, the client should assune that the
protection space consists of all URIs on the respondi ng server

Franks, et al. St andards Track [Page 8]

RFC 2617 HTTP Aut henti cati on June 1999

This directive is not meaningful in Proxy-Authenticate headers, for
whi ch the protection space is always the entire proxy; if present
it should be ignored.

nonce
A server-specified data string which should be uniquely generated
each time a 401 response is made. It is recommended that this
string be base64 or hexadeci mal data. Specifically, since the
string is passed in the header lines as a quoted string, the
doubl e-quote character is not all owed.

The contents of the nonce are inplenentation dependent. The quality
of the inplenentation depends on a good choice. A nonce m ght, for
exanpl e, be constructed as the base 64 encodi ng of

tinme-stanp H(tine-stanp ":" ETag ":" private-key)

where time-stanp is a server-generated tine or other non-repeating
val ue, ETag is the value of the HTTP ETag header associated with
the requested entity, and private-key is data known only to the
server. Wth a nonce of this forma server would recal cul ate the
hash portion after receiving the client authentication header and
reject the request if it did not match the nonce fromthat header
or if the time-stanp value is not recent enough. In this way the
server can limt the time of the nonce’'s validity. The inclusion of
the ETag prevents a replay request for an updated version of the
resource. (Note: including the |IP address of the client in the
nonce woul d appear to offer the server the ability to limt the
reuse of the nonce to the sane client that originally got it.
However, that would break proxy farms, where requests froma single
user often go through different proxies in the farm Also, IP
address spoofing is not that hard.)

An i nplenentation mght choose not to accept a previously used
nonce or a previously used digest, in order to protect against a
replay attack. O, an inplenentation mght choose to use one-tine
nonces or digests for POST or PUT requests and a tine-stanp for GET
requests. For nore details on the issues involved see section 4.

of this docunent.

The nonce is opaque to the client.

opaque
A string of data, specified by the server, which should be returned
by the client unchanged in the Authorization header of subsequent
requests with URIs in the sane protection space. It is reconmended
that this string be base64 or hexadeci nal dat a.

Franks, et al. St andards Track [Page 9]

RFC 2617 HTTP Aut henti cati on June 1999

stal e
A flag, indicating that the previous request fromthe client was
rej ected because the nonce value was stale. If stale is TRUE
(case-insensitive), the client may wish to sinply retry the request
with a new encrypted response, w thout repronpting the user for a
new username and password. The server should only set stale to TRUE
if it receives a request for which the nonce is invalid but with a
valid digest for that nonce (indicating that the client knows the
correct usernane/password). If stale is FALSE, or anything other
than TRUE, or the stale directive is not present, the usernane
and/ or password are invalid, and new val ues nust be obt ai ned.

al gorithm
A string indicating a pair of algorithnms used to produce the digest
and a checksum If this is not present it is assumed to be "MD5"
If the algorithmis not understood, the challenge should be ignored
(and a different one used, if there is nore than one).

In this docunment the string obtained by applying the digest
algorithmto the data "data" with secret "secret” will be denoted
by KD(secret, data), and the string obtained by applying the
checksum al gorithmto the data "data" will be denoted H(data). The
not ati on ung(X) neans the value of the quoted-string X without the
surroundi ng quot es.

For the "MD5" and "MD5-sess" al gorithns
H(data) = MD5(data)
and
KD(secret, data) = H(concat(secret, ":", data))

i.e., the digest is the MD5 of the secret concatenated with a col on
concatenated with the data. The "NMD5-sess" algorithmis intended to
allow efficient 3rd party authentication servers; for the
difference in usage, see the description in section 3.2.2.2.

gop- opti ons
This directive is optional, but is nmade so only for backward
conmpatibility with RFC 2069 [6]; it SHOULD be used by all
i mpl ementations conpliant with this version of the Digest schene.
If present, it is a quoted string of one or nore tokens indicating
the "quality of protection" values supported by the server. The
val ue "aut h" indicates authentication; the value "auth-int"
i ndi cates authentication with integrity protection; see the

Franks, et al. St andards Track [Page 10]

RFC 2617 HTTP Aut henti cati on June 1999

descriptions bel ow for calculating the response directive value for
the application of this choice. Unrecognized opti ons MJST be
i gnor ed.

aut h- par am
This directive allows for future extensions. Any unrecogni zed
directive MJST be ignored.

3.2.2 The Authorizati on Request Header
The client is expected to retry the request, passing an Authorization
header line, which is defined according to the framework above,
utilized as foll ows.

credential s
di gest -response

"Di gest" digest-response

1#(usernanme | realm| nonce | digest-uri
| response | [algorithm] | [cnhonce] |
[opaque] | [nessage-qop] |

[nonce-count] | [auth-paran)
user name = "usernane" "=" username-val ue
user name- val ue = quoted-string
di gest - uri = "uri" "=" digest-uri-value
di gest-uri-value = request-uri ; As specified by HITP/ 1.1
nmessage- qop = "qgop" "=" qop-val ue
cnonce = "cnonce" "=" cnonce-val ue
cnonce-val ue = nonce-val ue
nonce- count = "nc" "=" nc-val ue
nc- val ue = 8LHEX
response = "response" "=" request-di gest
request-di gest = <"> 32LHEX <">
LHEX = "o" | "1] "2"] "3"

4"] "5" | “e" | "7

"8 | non | vat | b |

e | o td" | te" | "M

The val ues of the opaque and algorithmfields must be those supplied
in the WWV Aut henti cate response header for the entity being
request ed.

response
A string of 32 hex digits conputed as defined bel ow, which proves
that the user knows a password

user name
The user’s nane in the specified realm

Franks, et al. St andards Track [Page 11]

RFC 2617 HTTP Aut henti cati on June 1999

di gest - uri
The URI from Request-URI of the Request-Line; duplicated here
because proxies are allowed to change the Request-Line in transit.

qop
I ndi cates what "quality of protection" the client has applied to
the message. If present, its value MJST be one of the alternatives
the server indicated it supports in the WWV Aut henti cate header.
These val ues affect the conputation of the request-digest. Note
that this is a single token, not a quoted list of alternatives as
in WWM Authenticate. This directive is optional in order to
preserve backward conpatibility with a ninimal inplenentation of
RFC 2069 [6], but SHOULD be used if the server indicated that qop
is supported by providing a qop directive in the WWV Aut henticate
header field.

cnonce
This MJST be specified if a qop directive is sent (see above), and
MUST NOT be specified if the server did not send a qop directive in
the WANM Aut henticate header field. The cnonce-value is an opaque
quoted string value provided by the client and used by both client
and server to avoid chosen plaintext attacks, to provide nutua
aut hentication, and to provide sone nmessage integrity protection
See the descriptions below of the calculation of the response-
di gest and request-di gest val ues.

nonce- count
This MJUST be specified if a qop directive is sent (see above), and
MUST NOT be specified if the server did not send a qop directive in
t he WAM Aut henti cate header field. The nc-value is the hexadeci mal
count of the number of requests (including the current request)
that the client has sent with the nonce value in this request. For
exanple, in the first request sent in response to a given nonce
val ue, the client sends "nc=00000001". The purpose of this
directive is to allow the server to detect request replays by
mai ntaining its own copy of this count - if the same nc-value is
seen twi ce, then the request is a replay. See the description
bel ow of the construction of the request-di gest val ue.

aut h- par am
This directive allows for future extensions. Any unrecogni zed
directive MJST be ignored.

If a directive or its value is inproper, or required directives are
m ssing, the proper response is 400 Bad Request. If the request-
digest is invalid, then a login failure should be |ogged, since
repeated login failures froma single client may indicate an attacker
attenpting to guess passwords.

Franks, et al. St andards Track [Page 12]

RFC 2617 HTTP Aut henti cati on June 1999

The definition of request-digest above indicates the encoding for its
val ue. The followi ng definitions show how the val ue is computed.

3.2.2.1 Request-Di gest
If the "qop" value is "auth" or "auth-int":

request-digest = <"> < KD (H(Al), ung(nonce-val ue)
:" nc-val ue
":" unq(cnonce-val ue)
":" unq(qgop-val ue)
" " H(A2)
) <">

If the "qop" directive is not present (this construction is for
conmpatibility with RFC 2069):

request-di gest =
<"> < KD (H(A1), ung(nonce-value) ":" H(A2)) >
<>
See below for the definitions for Al and A2.

3.2.2.2 Al

If the "algorithnl directive's value is "MD5" or is unspecified, then
Al is:

Al = ung(usernane-value) ":" ung(real mvalue) ":" passwd
wher e
passwd = < user’s password >

If the "algorithni directive's value is "M)5-sess", then Al is
cal cul ated only once - on the first request by the client follow ng
recei pt of a WWV Aut henticate challenge fromthe server. |t uses the
server nonce fromthat challenge, and the first client nonce value to
construct Al as foll ows:

Al = H(ung(username-value) ":" unqg(real mval ue)
":" passwd)
":" unq(nonce-value) ":" unqg(cnonce-val ue)

This creates a 'session key' for the authentication of subsequent
requests and responses which is different for each "authentication
session", thus linting the amount of naterial hashed with any one
key. (Note: see further discussion of the authentication session in

Franks, et al. St andards Track [Page 13]

RFC 2617 HTTP Aut henti cati on June 1999

section 3.3.) Because the server need only use the hash of the user
credentials in order to create the Al value, this construction could
be used in conjunction with a third party authentication service so
that the web server would not need the actual password value. The
specification of such a protocol is beyond the scope of this

speci fication.

3.2.2.3 A2
!f the "qop" directive's value is "auth" or is unspecified, then A2
is:
A2 = Method ":" digest-uri-val ue
If the "qop"” value is "auth-int", then A2 is:
A2 = Method ":" digest-uri-value ":" H(entity-body)
3.2.2.4 Directive values and quoted-string

Note that the value of many of the directives, such as "usernane-

val ue", are defined as a "quoted-string". However, the "ung" notation
i ndi cates that surrounding quotation nmarks are renoved in formng the
string Al. Thus if the Authorization header includes the fields

user name="Mif asa", real nenyhost @ estreal m com

and the user Mufasa has password "Circle O Life" then H(Al) would be
H(Muf asa: nyhost @estrealmcom Circle O Life) with no quotation marks
in the digested string.

No white space is allowed in any of the strings to which the digest
function H() is applied unless that white space exists in the quoted
strings or entity body whose contents nmake up the string to be

di gested. For exanple, the string Al illustrated above nust be

Muf asa: myhost @estrealmcom Circle O Life

with no white space on either side of the colons, but with the white
space between the words used in the password value. Likew se, the
other strings digested by H() nust not have white space on either
side of the colons which delimt their fields unless that white space
was in the quoted strings or entity body being di gested.

Also note that if integrity protection is applied (qop=auth-int), the

H(entity-body) is the hash of the entity body, not the nessage body -
it is conputed before any transfer encoding is applied by the sender

Franks, et al. St andards Track [Page 14]

RFC 2617 HTTP Aut henti cati on June 1999

and after it has been renoved by the recipient. Note that this
i ncludes multipart boundaries and enbedded headers in each part of
any nultipart content-type.

3.2.2.5 Various considerations

The "Method" value is the HTTP request nethod as specified in section
5.1.1 of [2]. The "request-uri" value is the Request-URl fromthe
request line as specified in section 5.1.2 of [2]. This may be "*",
an "absol uteURL" or an "abs_path" as specified in section 5.1.2 of
[2], but it MJUST agree with the Request-URI. In particular, it MJST
be an "absoluteURL" if the Request-URI is an "absoluteURL". The
"cnonce-val ue" is an optional client-chosen val ue whose purpose is
to foil chosen plaintext attacks.

The aut henticating server nust assure that the resource designated by
the "uri" directive is the sane as the resource specified in the
Request-Line; if they are not, the server SHOULD return a 400 Bad
Request error. (Since this may be a synptom of an attack, server

i mpl ementers may want to consider |ogging such errors.) The purpose
of duplicating information fromthe request URL in this field is to
deal with the possibility that an internedi ate proxy may alter the
client’s Request-Line. This altered (but presunably semantically
equi val ent) request would not result in the sane digest as that

cal cul ated by the client.

| mpl enenters should be aware of how authenticated transactions
interact with shared caches. The HITP/ 1.1 protocol specifies that
when a shared cache (see section 13.7 of [2]) has received a request
contai ning an Authorization header and a response fromrelaying that
request, it MJST NOT return that response as a reply to any other
request, unless one of two Cache-Control (see section 14.9 of [2])
directives was present in the response. If the original response

i ncluded the "nmust-revalidate" Cache-Control directive, the cache MAY
use the entity of that response in replying to a subsequent request,
but MUST first revalidate it with the origin server, using the
request headers fromthe new request to allow the origin server to
aut henticate the new request. Alternatively, if the original response
i ncluded the "public" Cache-Control directive, the response entity
MAY be returned in reply to any subsequent request.

3.2.3 The Authentication-Info Header
The Aut hentication-Info header is used by the server to conmunicate

some information regardi ng the successful authentication in the
response.

Franks, et al. St andards Track [Page 15]

RFC 2617 HTTP Aut henti cati on June 1999

Aut henti cati onlnfo " Aut henti cati on-1| nfo" auth-info

aut h-info 1#(nextnonce | [message-qop]
| [response-auth] | [cnonce]
| [nonce-count])

next nonce "next nonce" "=" nonce-val ue

response-auth
response- di gest

"rspaut h"
<|| > * LHEX <|| >

response- di gest

The val ue of the nextnonce directive is the nonce the server w shes
the client to use for a future authentication response. The server
may send the Authentication-Info header with a nextnonce field as a
means of inplenmenting one-time or otherwi se changing nonces. If the
nextnonce field is present the client SHOULD use it when constructing
the Authorization header for its next request. Failure of the client
to do so may result in a request to re-authenticate fromthe server
with the "stal e=sTRUE".

Server inplenentations should carefully consider the perfornmance

i mplications of the use of this mechanism pipelined requests will
not be possible if every response includes a nextnonce directive
that nmust be used on the next request received by the server

Consi deration should be given to the performance vs. security
tradeoffs of allowi ng an old nonce value to be used for a limted
time to pernit request pipelining. Use of the nonce-count can
retain nost of the security advantages of a new server nonce

wi t hout the deleterious affects on pipelining.

message- qop
Indicates the "quality of protection" options applied to the
response by the server. The value "auth" indicates authentication
the value "auth-int" indicates authentication with integrity
protection. The server SHOULD use the sanme value for the nessage-
gop directive in the response as was sent by the client in the
correspondi ng request.

The optional response digest in the "response-auth" directive
supports nutual authentication -- the server proves that it knows the
user’s secret, and with gop=auth-int also provides limted integrity
protection of the response. The "response-di gest” value is cal cul ated
as for the "request-digest" in the Authorization header, except that
if "qop=auth" or is not specified in the Authorization header for the
request, A2 is

A2 = ":" digest-uri-val ue
and if "qop=auth-int", then A2 is

A2 =":" digest-uri-value ":" H(entity-body)

Franks, et al. St andards Track [Page 16]

RFC 2617 HTTP Aut henti cati on June 1999

where "digest-uri-value" is the value of the "uri" directive on the
Aut hori zation header in the request. The "cnonce-val ue" and "nc-
val ue" MJST be the ones for the client request to which this nessage

is the response. The "response-auth", "cnonce", and "nonce-count"”
directives MIST BE present if "gop=auth" or "qop=auth-int" is
speci fi ed.

The Authentication-Info header is allowed in the trailer of an HITP
message transferred via chunked transfer-coding.

3.3 Digest Qperation

Upon receiving the Authorization header, the server nmay check its
validity by | ooking up the password that corresponds to the subnitted
usernane. Then, the server nust performthe sane di gest operation
(e.g., MDB) perfornmed by the client, and conpare the result to the

gi ven request -di gest val ue.

Note that the HTTP server does not actually need to know the user’s
cl eartext password. As long as H(Al) is available to the server, the
validity of an Authorization header rmay be verified.

The client response to a WWMAuthenticate chall enge for a protection
space starts an authentication session with that protection space.
The aut hentication session lasts until the client receives another
WAV Aut henti cat e chal | enge from any server in the protection space. A
client should renmenber the usernanme, password, nonce, nonce count and
opaque val ues associated with an authentication session to use to
construct the Authorization header in future requests within that
protection space. The Authorization header may be included
preenptively; doing so inproves server efficiency and avoids extra
round trips for authentication challenges. The server may choose to
accept the old Authorization header information, even though the
nonce val ue included m ght not be fresh. Alternatively, the server
may return a 401 response with a new nonce val ue, causing the client
to retry the request; by specifying stale=TRUE with this response,
the server tells the client to retry with the new nonce, but w thout
pronpting for a new usernanme and password

Because the client is required to return the value of the opaque
directive given to it by the server for the duration of a session

t he opaque data nmay be used to transport authentication session state
i nformati on. (Note that any such use can al so be acconplished nore
easily and safely by including the state in the nonce.) For exanple,
a server could be responsible for authenticating content that
actually sits on another server. It would achieve this by having the
first 401 response include a domain directive whose val ue includes a
URI on the second server, and an opaque directive whose val ue

Franks, et al. St andards Track [Page 17]

RFC 2617 HTTP Aut henti cati on June 1999

contains the state information. The client will retry the request, at
which tine the server mght respond with a 301/302 redirection
pointing to the URI on the second server. The client will follow the
redirection, and pass an Authorization header , including the
<opaque> dat a.

As with the basic scheme, proxies nmust be conpletely transparent in
the Digest access authentication schene. That is, they nust forward
the WANM Aut henticate, Authentication-Info and Authorizati on headers
untouched. If a proxy wants to authenticate a client before a request
is forwarded to the server, it can be done using the Proxy-

Aut henti cate and Proxy-Aut horizati on headers described in section 3.6
bel ow.

3.4 Security Protocol Negotiation

It is useful for a server to be able to know which security schenes a
client is capable of handling.

It is possible that a server may want to require Digest as its

aut henti cation method, even if the server does not know that the
client supports it. Aclient is encouraged to fail gracefully if the
server specifies only authentication schenmes it cannot handl e.

3.5 Exanpl e

The followi ng exanpl e assunmes that an access-protected docunment is
bei ng requested fromthe server via a GET request. The URI of the
docunent is "http://ww. nowhere.org/dir/index.htm". Both client and
server know that the usernanme for this docunent is "Mifasa”, and the
password is "Circle O Life" (with one space between each of the

t hree words).

The first tinme the client requests the docunent, no Authorization
header is sent, so the server responds with:

HTTP/ 1.1 401 Unaut hori zed

WA Aut hent i cat e: Di gest
real nE"t estreal méost. cont,
gop="aut h,auth-int",
nonce="dcd98b7102dd2f 0e8b11d0f 600bf bOc093"
opaque="5ccc069c403ebaf 9f 0171e9517f 40e41"

The client may pronpt the user for the usernane and password, after

which it will respond with a new request, including the follow ng
Aut hori zati on header

Franks, et al. St andards Track [Page 18]

RFC 2617 HTTP Aut henti cati on June 1999

Aut hori zation: Di gest usernanme="Mifasa"
real ne"t estreal méhost. cont,
nonce="dcd98b7102dd2f 0e8b11d0f 600bf b0c093"
uri="/dir/index. htm",
gop=aut h,
nc=00000001,
cnonce="0a4f 113b",
response="6629f ae49393a05397450978507c4ef 1",
opaque="5ccc069c403ebaf 9f 0171e9517f 40e41"

3.6 Proxy-Authentication and Proxy-Authorization

The di gest authentication scheme may al so be used for authenticating
users to proxies, proxies to proxies, or proxies to origin servers by
use of the Proxy-Authenticate and Proxy-Authorization headers. These
headers are instances of the Proxy-Authenticate and Proxy-

Aut hori zation headers specified in sections 10.33 and 10.34 of the
HTTP/ 1.1 specification [2] and their behavior is subject to
restrictions described there. The transactions for proxy

aut hentication are very sinmilar to those already described. Upon
receiving a request which requires authentication, the proxy/server
must issue the "407 Proxy Authentication Required" response with a
"Proxy-Aut henti cate" header. The digest-challenge used in the
Proxy- Aut henti cate header is the same as that for the WWV

Aut henti cat e header as defined above in section 3.2.1

The client/proxy must then re-issue the request with a Proxy-
Aut hori zation header, with directives as specified for the
Aut hori zati on header in section 3.2.2 above.

On subsequent responses, the server sends Proxy-Authentication-Info
with directives the sane as those for the Authentication-Info header
field.

Note that in principle a client could be asked to authenticate itself
to both a proxy and an end-server, but never in the sanme response.

4 Security Considerations
4.1 Authentication of Clients using Basic Authentication

The Basic authentication schene is not a secure nethod of user

aut hentication, nor does it in any way protect the entity, which is
transmitted in cleartext across the physical network used as the
carrier. HITP does not prevent additional authentication schenes and
encryption nechanisns from bei ng enpl oyed to increase security or the
addi ti on of enhancenents (such as schenes to use one-tinme passwords)
to Basic authentication.

Franks, et al. St andards Track [Page 19]

RFC 2617 HTTP Aut henti cati on June 1999

The nost serious flaw in Basic authentication is that it results in
the essentially cleartext transm ssion of the user’s password over
the physical network. It is this problem which Digest Authentication
attenpts to address.

Because Basic authentication involves the cleartext transni ssion of
passwords it SHOULD NOT be used (w thout enhancenents) to protect
sensitive or valuable information.

A common use of Basic authentication is for identification purposes
-- requiring the user to provide a user name and password as a neans
of identification, for exanple, for purposes of gathering accurate
usage statistics on a server. Wien used in this way it is tenpting to
think that there is no danger in its use if illicit access to the
protected docunents is not a major concern. This is only correct if
the server issues both user name and password to the users and in
particul ar does not allow the user to choose his or her own password.
The danger arises because naive users frequently reuse a single
password to avoid the task of maintaining nmultiple passwords.

If a server permits users to select their own passwords, then the
threat is not only unauthorized access to docunents on the server but
al so unaut hori zed access to any other resources on other systens that
the user protects with the sane password. Furthernore, in the
server’s password dat abase, many of the passwords may al so be users
passwords for other sites. The owner or administrator of such a
system coul d therefore expose all users of the systemto the risk of
unaut hori zed access to all those sites if this information is not

mai ntai ned in a secure fashion

Basi ¢ Authentication is also vulnerable to spoofing by counterfeit
servers. If a user can be led to believe that he is connecting to a
host containing information protected by Basic authentication when
in fact, he is connecting to a hostile server or gateway, then the
attacker can request a password, store it for later use, and feign an
error. This type of attack is not possible with D gest

Aut henti cation. Server inplenmenters SHOULD guard agai nst the
possibility of this sort of counterfeiting by gateways or CG

scripts. In particular it is very dangerous for a server to sinply
turn over a connection to a gateway. That gateway can then use the
persi stent connection nmechanismto engage in multiple transactions
with the client while inpersonating the original server in a way that
is not detectable by the client.

4.2 Authentication of Clients using Digest Authentication

Di gest Authentication does not provide a strong authentication
mechani sm when conpared to public key based nechani sns, for exanple.

Franks, et al. St andards Track [Page 20]

RFC 2617 HTTP Aut henti cati on June 1999

However, it is significantly stronger than (e.g.) CRAM MD5, which has
been proposed for use with LDAP [10], POP and | MAP (see RFC 2195
[9]). It is intended to replace the nuch weaker and even nore

danger ous Basi ¢ mechani sm

Di gest Authentication offers no confidentiality protection beyond
protecting the actual password. Al of the rest of the request and
response are avail able to an eavesdropper.

Di gest Authentication offers only limted integrity protection for
the nmessages in either direction. If qgop=auth-int nmechanismis used,
those parts of the nessage used in the cal culation of the WWY

Aut henti cate and Aut horization header field response directive val ues
(see section 3.2 above) are protected. Mst header fields and their
val ues could be nodified as a part of a man-in-the-mddl e attack

Many needs for secure HTTP transacti ons cannot be net by Di gest

Aut henti cation. For those needs TLS or SHITP are nore appropriate
protocols. In particular Digest authentication cannot be used for any
transaction requiring confidentiality protection. Neverthel ess many
functions remain for which Digest authentication is both useful and
appropriate. Any service in present use that uses Basic should be
switched to Digest as soon as practical

4.3 Limted Use Nonce Val ues

The Digest schenme uses a server-specified nonce to seed the
generation of the request-digest value (as specified in section
3.2.2.1 above). As shown in the exanple nonce in section 3.2.1, the
server is free to construct the nonce such that it may only be used
froma particular client, for a particular resource, for alimted
period of tine or nunber of uses, or any other restrictions. Doing
so strengthens the protection provided against, for exanple, replay
attacks (see 4.5). However, it should be noted that the nethod
chosen for generating and checking the nonce al so has perfornmance and
resource inplications. For exanple, a server may choose to allow
each nonce value to be used only once by maintaining a record of

whet her or not each recently issued nonce has been returned and
sendi ng a next-nonce directive in the Authentication-Info header
field of every response. This protects against even an i nmedi ate
replay attack, but has a high cost checking nonce val ues, and perhaps
nore inmportant will cause authentication failures for any pipelined
requests (presunably returning a stale nonce indication). Sinmilarly,
i ncorporating a request-specific el enent such as the Etag value for a
resource limts the use of the nonce to that version of the resource
and al so defeats pipelining. Thus it may be useful to do so for

met hods with side effects but have unacceptabl e perfornance for those
that do not.

Franks, et al. St andards Track [Page 21]

RFC 2617 HTTP Aut henti cati on June 1999

4.4 Conparison of Digest with Basic Authentication

Bot h Di gest and Basic Authentication are very nmuch on the weak end of
the security strength spectrum But a conparison between the two
points out the utility, even necessity, of replacing Basic by Digest.

The greatest threat to the type of transactions for which these
protocol s are used is network snooping. This kind of transaction

m ght involve, for exanple, online access to a database whose use is
restricted to paying subscribers. Wth Basic authentication an
eavesdropper can obtain the password of the user. This not only
permits himto access anything in the database, but, often worse,
will permt access to anything else the user protects with the sane
password

By contrast, with Digest Authentication the eavesdropper only gets
access to the transaction in question and not to the user’s password.
The i nformati on gai ned by the eavesdropper would permt a replay
attack, but only with a request for the same docunment, and even that
may be limted by the server’s choice of nonce.

4.5 Replay Attacks

A replay attack agai nst Di gest authentication would usually be

poi ntl ess for a sinple GET request since an eavesdropper woul d

al ready have seen the only docunment he could obtain with a replay.
This is because the URI of the requested docunent is digested in the
client request and the server will only deliver that document. By
contrast under Basic Authentication once the eavesdropper has the
user’s password, any docunent protected by that password is open to
hi m

Thus, for some purposes, it is necessary to protect against replay
attacks. A good Digest inplenmentation can do this in various ways.
The server created "nonce" value is inplenentation dependent, but if
it contains a digest of the client IP, a tine-stanp, the resource
ETag, and a private server key (as reconmmended above) then a replay
attack is not sinple. An attacker nust convince the server that the
request is comng froma false |IP address and nust cause the server
to deliver the docunent to an |IP address different fromthe address
to which it believes it is sending the docunent. An attack can only
succeed in the period before the time-stanp expires. Digesting the
client 1P and time-stanp in the nonce pernmits an inplenmentation which
does not nmintain state between transactions.

For applications where no possibility of replay attack can be

tolerated the server can use one-tinme nonce values which will not be
honored for a second use. This requires the overhead of the server

Franks, et al. St andards Track [Page 22]

RFC 2617 HTTP Aut henti cati on June 1999

remenberi ng whi ch nonce val ues have been used until the nonce tine-
stanp (and hence the digest built with it) has expired, but it
effectively protects against replay attacks.

An inmpl enentation nmust give special attention to the possibility of
replay attacks with POST and PUT requests. Unless the server enploys
one-tine or otherwi se linited-use nonces and/or insists on the use of
the integrity protection of gop=auth-int, an attacker could replay
valid credentials froma successful request with counterfeit form
data or other nessage body. Even with the use of integrity protection
nost netadata in header fields is not protected. Proper nonce
generation and checki ng provi des sone protection agai nst replay of
previously used valid credentials, but see 4.8.

4.6 Weakness Created by Miltiple Authentication Schenes

An HTTP/ 1.1 server nmay return nmultiple challenges with a 401

(Aut henti cate) response, and each challenge nay use a different
aut h-schene. A user agent MJST choose to use the strongest auth-
schene it understands and request credentials fromthe user based
upon that chall enge.

Note that nmany browsers will only recognize Basic and will require
that it be the first auth-scheme presented. Servers should only
include Basic if it is mnimally acceptable.

When the server offers choices of authentication schenes using the
WAV Aut henti cat e header, the strength of the resulting authentication
is only as good as that of the of the weakest of the authentication
schemes. See section 4.8 below for discussion of particular attack
scenarios that exploit multiple authentication schenes.

4.7 Online dictionary attacks

If the attacker can eavesdrop, then it can test any overheard

nonce/ response pairs against a list of conmon words. Such a list is
usual Iy much smaller than the total nunber of possible passwords. The
cost of computing the response for each password on the list is paid
once for each chall enge

The server can nmitigate this attack by not allow ng users to sel ect
passwords that are in a dictionary.

Franks, et al. St andards Track [Page 23]

RFC 2617 HTTP Aut henti cati on June 1999

4.8 Man in the Mddle

Bot h Basic and Di gest authentication are vulnerable to "man in the

m ddle" (MTM attacks, for exanple, froma hostile or conprom sed
proxy. Cearly, this would present all the probl ens of eavesdropping.
But it also offers sone additional opportunities to the attacker

A possible man-in-the-nmiddle attack would be to add a weak

aut henti cation schene to the set of choices, hoping that the client
will use one that exposes the user’s credentials (e.g. password). For
this reason, the client should always use the strongest schene that
it understands fromthe choices offered.

An even better MTM attack would be to renove all offered choices,
replacing themw th a challenge that requests only Basic

aut hentication, then uses the cleartext credentials fromthe Basic
authentication to authenticate to the origin server using the
stronger schene it requested. A particularly insidious way to nount
such a M TM attack would be to offer a "free" proxy caching service
to gullible users

User agents shoul d consi der neasures such as presenting a visua
indication at the tine of the credentials request of what

aut hentication schene is to be used, or renenbering the strongest
aut henti cati on schene ever requested by a server and produce a
war ni ng nessage before using a weaker one. It might also be a good
idea for the user agent to be configured to demand Di gest

aut hentication in general, or fromspecific sites.

O, a hostile proxy night spoof the client into nmaking a request the
attacker wanted rather than one the client wanted. O course, this is
still much harder than a conparable attack agai nst Basic

Aut hent i cati on.

4.9 Chosen plaintext attacks

Wth Digest authentication, a MTMor a malicious server can
arbitrarily choose the nonce that the client will use to conpute the
response. This is called a "chosen plaintext"” attack. The ability to
choose the nonce is known to nmake cryptanal ysis nuch easier [8].

However, no way to analyze the MD5 one-way function used by D gest
usi ng chosen plaintext is currently known.

The counterneasure against this attack is for clients to be
configured to require the use of the optional "cnonce" directive;
this allows the client to vary the input to the hash in a way not
chosen by the attacker.

Franks, et al. St andards Track [Page 24]

RFC 2617 HTTP Aut henti cati on June 1999

4.10 Preconputed dictionary attacks

Wth Digest authentication, if the attacker can execute a chosen

pl ai ntext attack, the attacker can preconpute the response for nany
common words to a nonce of its choice, and store a dictionary of
(response, password) pairs. Such preconputation can often be done in
parallel on many machines. It can then use the chosen pl ai ntext
attack to acquire a response corresponding to that challenge, and
just ook up the password in the dictionary. Even if nost passwords
are not in the dictionary, sone might be. Since the attacker gets to
pick the chall enge, the cost of conmputing the response for each
password on the list can be anortized over finding nmany passwords. A
dictionary with 100 nmillion password/response pairs woul d take about
3.2 gigabytes of disk storage.

The counterneasure against this attack is to for clients to be
configured to require the use of the optional "cnonce" directive.

4.11 Batch brute force attacks

Wth Digest authentication, a M TM can execute a chosen pl ai nt ext
attack, and can gather responses from nmany users to the sane nonce.

It can then find all the passwords w thin any subset of password
space that woul d generate one of the nonce/response pairs in a single
pass over that space. It also reduces the tine to find the first
password by a factor equal to the nunmber of nonce/response pairs
gathered. This search of the password space can often be done in
paral |l el on many machi nes, and even a single nmachine can search |arge
subsets of the password space very quickly -- reports exist of
searching all passwords with six or fewer letters in a few hours

The counterneasure against this attack is to for clients to be
configured to require the use of the optional "cnonce" directive.

4,12 Spoofing by Counterfeit Servers

Basi ¢ Authentication is vulnerable to spoofing by counterfeit

servers. |If a user can be led to believe that she is connecting to a
host containing information protected by a password she knows, when
in fact she is connecting to a hostile server, then the hostile
server can request a password, store it away for later use, and feign
an error. This type of attack is nore difficult with D gest

Aut hentication -- but the client nmust know to demand that Di gest

aut henti cati on be used, perhaps using sone of the techniques

descri bed above to counter "man-in-the-mddl e" attacks. Again, the
user can be helped in detecting this attack by a visual indication of
the aut hentication nechanismin use with appropriate guidance in
interpreting the inplications of each schene.

Franks, et al. St andards Track [Page 25]

RFC 2617 HTTP Aut henti cati on June 1999

4.13 Storing passwords

Di gest authentication requires that the authenticating agent (usually
the server) store sone data derived fromthe user’s nane and password
in a "password file" associated with a given realm Nornally this

nmi ght contain pairs consisting of username and H(Al), where H(Al) is
t he di gested value of the username, realm and password as descri bed
above.

The security inplications of this are that if this password file is
conprom sed, then an attacker gains i medi ate access to docunents on
the server using this realm Unlike, say a standard UN X password
file, this information need not be decrypted in order to access
docunents in the server real massociated with this file. On the other
hand, decryption, or nmore likely a brute force attack, would be
necessary to obtain the user’s password. This is the reason that the
realmis part of the digested data stored in the password file. It
means that if one Digest authentication password file is conproni sed,
it does not automatically conpronise others with the sanme usernane
and password (though it does expose themto brute force attack).

There are two inportant security consequences of this. First the
password file nmust be protected as if it contained unencrypted
passwords, because for the purpose of accessing docunments inits
realm it effectively does.

A second consequence of this is that the real mstring should be

uni que anong all realns which any single user is likely to use. In

particular a real mstring should include the name of the host doing
the authentication. The inability of the client to authenticate the
server is a weakness of Digest Authentication

4.14 Summary

By nodern cryptographic standards Di gest Authentication is weak. But
for a large range of purposes it is valuable as a replacenent for

Basi ¢ Authentication. It renmedies sone, but not all, weaknesses of
Basi ¢ Authentication. Its strength may vary dependi ng on the
i mpl ementation. In particular the structure of the nonce (which is

dependent on the server inplenentation) may affect the ease of
mounting a replay attack. A range of server options is appropriate
since, for exanple, sone inplenentations may be willing to accept the
server overhead of one-tine nonces or digests to eliminate the
possibility of replay. Ohers may satisfied with a nonce |ike the one
recommended above restricted to a single I P address and a single ETag
or with alimted lifetine.

Franks, et al. St andards Track [Page 26]

RFC 2617 HTTP Aut henti cati on June 1999

The bottomline is that *any* conpliant inplenentation will be
relatively weak by cryptographi c standards, but *any* conpli ant
i npl ementation will be far superior to Basic Authentication

5 Sanpl e i npl enentation

The followi ng code inplenments the cal cul ations of H(Al), H(A2),
request -di gest and response-di gest, and a test program which computes
the val ues used in the exanple of section 3.5. It uses the M5

i mpl ementation from RFC 1321.

File "digcalc.h":

#defi ne HASHLEN 16

typedef char HASH HASHLEN] ;

#defi ne HASHHEXLEN 32

typedef char HASHHEX] HASHHEXLEN+1] ;
#define IN

#defi ne OUT

/* cal culate H(Al) as per HITP Di gest spec */
voi d Di gest Cal cHAL(

char * pszAl g,

char * pszUser Nane,

char * pszReal m

char * pszPassword,

char * pszNonce,

char * pszCNonce,

QUT HASHHEX Sessi onKey

)E

/* cal cul ate request-di gest/response-di gest as per HITP Digest spec */
voi d Di gest Cal cResponse(

Z2Z22Z2222

I N HASHHEX HA1, /* H(AL) */

IN char * pszNonce, /* nonce from server */

IN char * pszNonceCount, /* 8 hex digits */

IN char * pszCNonce, /* client nonce */

I N char * pszQop, /* qop-value: "", "auth", "auth-int" */
I N char * pszMet hod, /* method fromthe request */

IN char * pszDigestUri, /* requested URL */

I N HASHHEX HEntity, /* Hlentity body) if qop="auth-int" */
QUT HASHHEX Response /* request-di gest or response-di gest */

)
File "digcalc.c":

#i ncl ude <gl obal . h>
#i ncl ude <nd5. h>

Franks, et al. St andards Track [Page 27]

RFC 2617 HTTP Aut henti cati on

#i ncl ude <string. h>
#i ncl ude "digcal c. h"

voi d Cvt Hex(
I N HASH Bi n,
QUT HASHHEX Hex
)

{

unsi gned short i;
unsi gned char j;

for (i =0; i < HASHLEN, i++) {
j = (Bin[i] > 4) & 0Oxf;
if (j <=9
Hex[i*2] = (j +'0");
el se
Hex[i*2] = (] +'a - 10);
j = Bin[i] & Oxf;

if (j <=09)
Hex[i*2+1] = (j + '0');
el se
Hex[i*2+1] = (j + 'a - 10);
};
Hex[HASHHEXLEN] = '\ 0’ ;

H

/* cal culate H(Al) as per spec */
voi d Di gest Cal cHAL(
I N char * pszAl g,
I N char pszUser Nane,
I N char pszReal m
I N char pszPassword,
I'N
I'N

L

char pszNonce,
char * pszCNonce,
QUT HASHHEX Sessi onKey

)

MD5_CTX MI5C X;
HASH HAL;

VD51 ni t (&MWI5CE X) ;

MD5Updat e(&MI5Ct X, pszUser Nane, strlen(pszUser Nane));
MD5Updat e(&MI5Ct x, ": ", 1);

MD5Updat e(&MI5Ct X, pszReal m strlen(pszReal m);
MD5Updat e(&MWH5CE x, ":", 1);

MD5Updat e(&MI5Ct X, pszPassword, strlen(pszPassword));
MD5Fi nal (HAL, &MI5Ct X);

if (stricnmp(pszAl g, "md5-sess") == 0) {

Franks, et al. St andards Track

June 1999

[Page 28]

RFC 2617

HTTP Aut henti cati on

June 1999

MD5I1 ni t (&MI5Ct x) ;

MD5Updat e(&MI5CY X,
MD5Updat e(&VI5CE x, ": ",
MD5Updat e(&MI5CY X,
MD5Updat e(&WI5CE x, ": ",
MD5Updat e(&MI5CY X,

HA1, HASHLEN);

1);

pszNonce, strlen(pszNonce));
1);

pszCNonce, strlen(pszCNonce));

MD5Fi nal (HAL, &MI5CX):

1
Cvt Hex(HA1, Sessi onKey);

b

/* cal cul ate request-di gest/response-di gest as per

voi d Di gest Cal cResponse(

I N HASHHEX HA1,

I N char * pszNonce,

I N char * pszNonceCount,
IN char * pszCNonce,

IN char * pszQop,

I N char * pszMet hod,

IN char * pszDigestUri,
I N HASHHEX HEntity,

OUT HASHHEX Response
)

MD5_CTX MI5C x;
HASH HA2;

HASH RespHash;
HASHHEX HA2Hex;

/1 cal cul ate H(A2)
MD5I1 ni t (&MI5Ct x) ;

MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,

if (stricnp(pszQop,

pszMet hod,

n : n , 1) ;

pszDigestUri,
"auth-int")

HTTP Di gest spec */

/*
/*
/*
/*
/*
/*
/*
/*
/*

H(AL) */

nonce from server */

8 hex digits */

client nonce */

gqop-value: "", "auth", "auth-int"
met hod fromthe request */
requested URL */

H(entity body) if qop="auth-int" */
request -di gest or response-di gest */

*/

strl en(pszMet hod));

strlen(pszDigestUri));
0) {

MD5Updat e(&MI5Ct x, ": ", 1);

MD5Updat e(&MI5CY X,

HENntity, HASHHEXLEN);

}
MD5Fi nal (HA2, &MWI5Ct x);

Cvt Hex(HA2, HA2Hex);

/'l cal cul ate response
MD5I ni t (&MI5Ct X) ;

MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,

if (*pszQop) {

Franks, et al.

HA1, HASHHEXLEN);
" il 1) 1
pszNonce,
"1 1) ;

strl en(pszNonce));

St andards Track [Page 29]

RFC 2617

MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,
MD5Updat e(&MI5CY X,

HTTP Aut henti cati on

pszNonceCount, strlen(pszNonceCount));

e, 1);

pszCNonce, strlen(pszCNonce));
")

pszQop, strlen(pszQop));
")

}

MD5Updat e(&MH5Ct x, HA2Hex, HASHHEXLEN) ;
MD5Fi nal (RespHash, &w5Ct x);

Cvt Hex(RespHash, Response);

b

File "digtest.c":

#i ncl ude <stdio. h>
#i ncl ude "digcal c. h"

void main(int argc, char **

argv) {

June

1999

char
char
char
char
char
char
char
char
char
char

pszCNonce = "Qa4f113b";

pszUser = "Mifasa";

pszReal m = "t estreal maost. cont;
pszPass = "Circle OF Life";
pszAl g = "nd5";

szNonceCount[9] = "00000001";

* pszMethod = " CET";

* pszQop = "auth";

* pszUR "/dir/index. htm";

L I

HASHHEX HAL,
HASHHEX HA2 = "";
HASHHEX Response;

Di gest Cal cHAL(pszAl g,

pszCNonce,

Di gest Cal cResponse(HAl, pszNonce,
pszMet hod, pszURI,
printf("Response = %\n",

Fr anks, et

pszUser,
HAL) ;

HA2, Response);
Response) ;

al . St andards Track

pszReal m pszPass,

szNonceCount ,

pszNonce = "dcd98b7102dd2f 0e8b11d0f 600bf b0c093";

pszNonce,

pszCNonce, pszQop,

[Page 30]

RFC 2617 HTTP Aut henti cati on June 1999

6 Acknow edgnent s

Eric W Sink, of AbiSource, Inc., was one of the original authors
before the specification underwent substantial revision.

In addition to the authors, valuable discussion instrunental in
creating this docunent has come from Peter J. Churchyard, Ned Freed,
and David M Kristol.

JimGettys and Larry Masinter edited this docunent for update.
7 References

[1] Berners-Lee, T., Fielding, R and H Frystyk, "Hypertext
Transfer Protocol -- HITP/1.0", RFC 1945, My 1996.

[2] Fielding, R, Gettys, J., Mgul, J., Frysyk, H, Masinter, L.,
Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
HTTP/ 1. 1", RFC 2616, June 1999.

[3] Rivest, R, "The MD5 Message-Digest Al gorithni, RFC 1321, April
1992.

[4] Freed, N. and N. Borenstein. "Miltipurpose Internet Mail
Extensions (M ME) Part One: Format of |nternet Message Bodies”,
RFC 2045, Novenber 1996.

[5] Dierks, T. and C. Allen "The TLS Protocol, Version 1.0", RFC
2246, January 1999.

[6] Franks, J., Hallam Baker, P., Hostetler, J., Leach, P.,
Luotonen, A., Sink, E. and L. Stewart, "An Extension to HITP :
Di gest Access Authentication", RFC 2069, January 1997.

[7] Berners Lee, T, Fielding, R and L. Masinter, "Uniform Resource
Identifiers (URI): Ceneric Syntax", RFC 2396, August 1998.

[8] Kaliski, B.,Robshaw, M, "Message Authentication with M5",
Crypt oBytes, Sping 1995, RSA Inc,
(http://ww.rsa. conirsal abs/ pubs/ crypt obyt es/ spri ng95/ nd5. ht m

[9] Klensin, J., Catoe, R and P. Krunviede, "IMAP/POP AUTHori ze
Extensi on for Sinple Challenge/ Response”, RFC 2195, Septenber
1997.

[10] Morgan, B., Alvestrand, H, Hodges, J., Wahl, M,
"Aut hentication Methods for LDAP', Wdrk in Progress.

Franks, et al. St andards Track [Page 31]

RFC 2617 HTTP Aut henti cati on June 1999

8 Aut hors’ Addresses

John Franks

Pr of essor of Mathemmtics
Department of Mat hematics
Nort hwestern University
Evanston, |IL 60208-2730, USA

EMai | : j ohn@rat h. nwu. edu

Phillip M Hallam Baker
Princi pal Consul tant
Verisign Inc.

301 Edgewat er Pl ace
Suite 210

Wakefield MA 01880, USA

EMai | : pbaker @eri sign. com

Jeffery L. Hostetler
Sof tware Craftsnman
Abi Source, Inc.

6 Dunl ap Court
Savoy, |L 61874

EMai | : jef f @\bi Source. com
Scott D. Lawrence

Agranat Systens, |nc.

5 O ocktower Pl ace, Suite 400
Maynard, MA 01754, USA

EMai | : | awr ence@granat.com
Paul J. Leach

M crosoft Corporation

1 Mcrosoft Wy

Rednond, WA 98052, USA

EMai | : paul | e@ri crosoft.com

Franks, et al. St andards Track [Page 32]

RFC 2617 HTTP Aut henti cati on June 1999

Ari Luotonen

Menber of Technical Staff

Net scape Conmuni cati ons Corporation
501 East M ddl efi el d Road

Mount ai n Vi ew, CA 94043, USA

Law ence C. Stewart

Open Market, Inc.

215 First Street
Canbridge, MA 02142, USA

EMai | : stewart @penMar ket.com

Franks, et al. St andards Track [Page 33]

RFC 2617 HTTP Aut henti cati on June 1999

9. Full Copyright Statenent
Copyright (C) The Internet Society (1999). All R ghts Reserved.

This docunent and translations of it nay be copied and furnished to
others, and derivative works that comment on or otherw se explain it
or assist in its inplenentation my be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This docunent and the infornmation contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Franks, et al. St andards Track [Page 34]

