
TCK User’s Guide for Technology
Implementors

Table of Contents
Eclipse Foundation . 1

Preface. 2

Who Should Use This Book . 2

Before You Read This Book . 2

Typographic Conventions . 2

Shell Prompts in Command Examples . 3

1 Introduction . 4

1.1 Compatibility Testing . 4

1.2 About the TCK. 5

1.3 Getting Started With the TCK . 8

2 Procedure for Certification . 10

2.1 Certification Overview . 10

2.2 Compatibility Requirements . 10

2.3 Test Appeals Process . 14

2.4 Specifications for Jakarta Faces . 16

2.5 Libraries for Jakarta Faces . 17

3 Installation . 18

3.1 Obtaining a Compatible Implementation . 18

3.2 Installing the Software . 18

4 Setup and Configuration . 20

4.1 Configuring Your Environment to Run the TCK Against the Compatible Implementation

(CI) . 20

4.2 Configuring Your Environment to Run the TCK Against the Vendor Implementation (VI) 22

5 Executing Tests . 23

5.1 Starting the tests . 23

5.2 Running a Subset of the Tests . 24

5.3 Running the TCK Against another CI . 24

5.4 Running the TCK Against a Vendor’s Implementation . 25

5.5 Test Reports. 25

6 Debugging Test Problems . 26

6.1 Overview . 26

6.2 Test Information . 26

6.3 Configuration Failures . 26

A Frequently Asked Questions . 27

A.1 Where do I start to debug a test failure? . 27

A.2 How do I restart a crashed test run? . 27

A.3 What would cause tests be added to the exclude list? . 27

Eclipse Foundation
Technology Compatibility Kit User’s Guide for Jakarta Faces

Release 4.0 for Jakarta EE

May 2022

Technology Compatibility Kit User’s Guide for Jakarta Faces, Release 4.0 for Jakarta EE

Copyright © 2017, 2022 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

References in this document to JSF refer to the Jakarta Faces unless otherwise noted.

1

http://www.eclipse.org/legal/epl-2.0

Preface
This guide describes how to install, configure, and run the Technology Compatibility Kit (TCK) that
is used to test the Jakarta Faces (Faces 4.0) technology.

The Faces TCK is a portable, configurable automated test suite for verifying the compatibility of a
vendor’s implementation of the Faces 4.0 Specification (hereafter referred to as the vendor
implementation or VI).


Note All references to specific Web URLs are given for the sake of your
convenience in locating the resources quickly. These references are always subject
to changes that are in many cases beyond the control of the authors of this guide.

Jakarta EE is a community sponsored and community run program. Organizations contribute,
along side individual contributors who use, evolve and assist others. Commercial support is not
available through the Eclipse Foundation resources. Please refer to the Eclipse EE4J project site
(https://projects.eclipse.org/projects/ee4j). There, you will find additional details as well as a list of
all the associated sub-projects (Implementations and APIs), that make up Jakarta EE and define
these specifications. If you have questions about this Specification you may send inquiries to faces-
dev@eclipse.org. If you have questions about this TCK, you may send inquiries to faces-
dev@eclipse.org.

Who Should Use This Book
This guide is for vendors that implement the Faces 4.0 technology to assist them in running the test
suite that verifies compatibility of their implementation of the Faces 4.0 Specification.

Before You Read This Book
You should be familiar with the Faces 4.0, version 4.0 Specification, which can be found at
https://jakarta.ee/specifications/faces/4.0/.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

2

https://projects.eclipse.org/projects/ee4j
mailto:faces-dev@eclipse.org
mailto:faces-dev@eclipse.org
mailto:faces-dev@eclipse.org
mailto:faces-dev@eclipse.org
https://jakarta.ee/specifications/faces/4.0/

Convention Meaning Example

Boldface Boldface type indicates graphical user
interface elements associated with an
action, terms defined in text, or what
you type, contrasted with onscreen
computer output.

From the File menu, select Open Project.

A cache is a copy that is stored locally.

machine_name% *su*
Password:

Monospace Monospace type indicates the names
of files and directories, commands
within a paragraph, URLs, code in
examples, text that appears on the
screen, or text that you enter.

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Italic Italic type indicates book titles,
emphasis, or placeholder variables for
which you supply particular values.

Read Chapter 6 in the User’s Guide.

Do not save the file.

The command to remove a file is rm
filename.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Bash shell shell_name-shell_version$

Bash shell for superuser shell_name-shell_version#

3

1 Introduction
This chapter provides an overview of the principles that apply generally to all Technology
Compatibility Kits (TCKs) and describes the Jakarta Faces TCK (Faces 4.0 TCK). It also includes a high
level listing of what is needed to get up and running with the Faces TCK.

This chapter includes the following topics:

• Compatibility Testing

• About the TCK

• Getting Started With the TCK

1.1 Compatibility Testing
Compatibility testing differs from traditional product testing in a number of ways. The focus of
compatibility testing is to test those features and areas of an implementation that are likely to differ
across other implementations, such as those features that:

• Rely on hardware or operating system-specific behavior

• Are difficult to port

• Mask or abstract hardware or operating system behavior

Compatibility test development for a given feature relies on a complete specification and
compatible implementation (CI) for that feature. Compatibility testing is not primarily concerned
with robustness, performance, nor ease of use.

1.1.1 Why Compatibility Testing is Important

Jakarta platform compatibility is important to different groups involved with Jakarta technologies
for different reasons:

• Compatibility testing ensures that the Jakarta platform does not become fragmented as it is
ported to different operating systems and hardware environments.

• Compatibility testing benefits developers working in the Jakarta programming language,
allowing them to write applications once and then to deploy them across heterogeneous
computing environments without porting.

• Compatibility testing allows application users to obtain applications from disparate sources and
deploy them with confidence.

• Conformance testing benefits Jakarta platform implementors by ensuring a level playing field
for all Jakarta platform ports.

4

#GBFTK
#GBFQR
#GBFQW

1.1.2 TCK Compatibility Rules

Compatibility criteria for all technology implementations are embodied in the TCK Compatibility
Rules that apply to a specified technology. Each TCK tests for adherence to these Rules as described
in Chapter 2, "Procedure for Certification."

1.1.3 TCK Overview

A TCK is a set of tools and tests used to verify that a vendor’s compatible implementation of a
Jakarta EE technology conforms to the applicable specification. All tests in the TCK are based on the
written specifications for the Jakarta EE platform. A TCK tests compatibility of a vendor’s
compatible implementation of the technology to the applicable specification of the technology.
Compatibility testing is a means of ensuring correctness, completeness, and consistency across all
implementations developed by technology licensees.

The set of tests included with each TCK is called the test suite. Most tests in a TCK’s test suite are
self-checking, but some tests may require tester interaction. Most tests return either a Pass or Fail
status. For a given platform to be certified, all of the required tests must pass. The definition of
required tests may change from platform to platform.

The definition of required tests will change over time. Before your final certification test pass, be
sure to download the latest version of this TCK.

1.1.4 Jakarta EE Specification Process (JESP) Program and Compatibility
Testing

The Jakarta EE Specification Process (JESP) program is the formalization of the open process that
has been used since 2019 to develop and revise Jakarta EE technology specifications in cooperation
with the international Jakarta EE community. The JESP program specifies that the following three
major components must be included as deliverables in a final Jakarta EE technology release under
the direction of the responsible Expert Group:

• Technology Specification

• Compatible Implementation (CI)

• Technology Compatibility Kit (TCK)

For further information about the JESP program, go to Jakarta EE Specification Process community
page https://jakarta.ee/specifications.

1.2 About the TCK
The Faces TCK 4.0 is designed as a portable, configurable, automated test suite for verifying the
compatibility of a vendor’s implementation of the Faces 4.0 Specification.

5

rules.html#GBFSN
https://jakarta.ee/specifications

1.2.1 TCK Specifications and Requirements

This section lists the applicable requirements and specifications.

• Specification Requirements: Software requirements for a Faces implementation are described
in detail in the Faces 4.0 Specification. Links to the Faces specification and other product
information can be found at https://jakarta.ee/specifications/faces/4.0/.

• Faces Version: The Faces 4.0 TCK is based on the Faces Specification, Version 4.0.

• Compatible Implementation: One Faces 4.0 Compatible Implementation, Eclipse Mojarra 4.0 is
available from the Eclipse EE4J project (https://projects.eclipse.org/projects/ee4j). See the CI
documentation page at https://projects.eclipse.org/projects/ee4j.mojarra for more information.

See the Faces TCK Release Notes for more specific information about Java SE version requirements,
supported platforms, restrictions, and so on.

1.2.2 TCK Components

The Faces TCK 4.0 includes the following components:

• Faces TCK signature tests; check that all public APIs are supported and/or defined as specified in
the Faces Version 4.0 implementation under test.

• If applicable, an exclude list, which provides a list of tests that your implementation is not
required to pass.

• API tests for all of the Faces API in all related packages:

◦ jakarta.faces

◦ jakarta.faces.application

◦ jakarta.faces.bean

◦ jakarta.faces.component

◦ jakarta.faces.component.behavior

◦ jakarta.faces.component.html

◦ jakarta.faces.component.visit

◦ jakarta.faces.context

◦ jakarta.faces.convert

◦ jakarta.faces.el

◦ jakarta.faces.event

◦ jakarta.faces.lifecycle

◦ jakarta.faces.model

◦ jakarta.faces.render

6

https://jakarta.ee/specifications/faces/4.0/
https://projects.eclipse.org/projects/ee4j
https://projects.eclipse.org/projects/ee4j.mojarra

◦ jakarta.faces.validator

◦ jakarta.faces.view

◦ jakarta.faces.view.facelets

◦ jakarta.faces.webapp

The Faces TCK tests run on the following platforms:

• CentOS Linux 7

1.2.3 TCK Compatibility Test Suite

The test suite is the collection of tests to test a particular technology implementation. In this case, it
is the collection of JUnit tests used by the Faces TCK 4.0 to test a Faces 4.0 implementation. The tests
are designed to verify that a vendor’s runtime implementation of the technology complies with the
appropriate specification. The individual tests correspond to assertions of the specification.

The tests that make up the TCK compatibility test suite are precompiled and indexed within the TCK
jar directory structure.

1.2.4 Exclude Lists

Each version of a TCK includes an Exclude List contained in a TCK-Exclude-List.txt file. This is a list
of test file URLs that identify tests which do not have to be run for the specific version of the TCK
being used. Whenever tests are run, the Junit framework automatically excludes these tests from
being executed as those are disabled using @Disabled tag in JUnit.

A vendor’s compatible implementation is not required to pass or run any test on the Exclude List.
The Exclude List file, docs/TCK-Exclude-List.txt, is documented in the Faces TCK. Please note this
file is not parsed to exclude any test and is only for documentation purpose.



From time to time, updates to the Exclude List are made available. The exclude list
is included in the TCK ZIP archive. Each time an update is approved and released,
the version number will be incremented. You should always make sure you are
using an up-to-date copy of the Exclude List before running the Faces TCK to verify
your implementation.

A test might be in the Exclude List for reasons such as:

• An error in an underlying implementation API has been discovered which does not allow the
test to execute properly.

• An error in the specification that was used as the basis of the test has been discovered.

• An error in the test itself has been discovered.

• The test fails due to a bug in the tools used to run the test.

7

In addition, all tests are run against the compatible implementations. Any tests that fail when run
on a compatible Jakarta platform are put on the Exclude List. Any test that is not specification-
based, or for which the specification is vague, may be excluded. Any test that is found to be
implementation dependent (based on a particular thread scheduling model, based on a particular
file system behavior, and so on) may be excluded.


Vendors are not permitted to alter or modify Exclude Lists. Changes to an Exclude
List can only be made by using the procedure described in Section 2.3.1, "TCK Test
Appeals Steps."

1.2.5 TCK Configuration

You need to set several variables in your test environment, and run the Faces tests, as described in
Chapter 4, "Setup and Configuration."



The Jakarta EE Specification Process support multiple compatible
implementations. These instructions explain how to get started with the Eclipse
Mojarra 4.0 CI. If you are using another compatible implementation, refer to
material provided by that implementation for specific instructions and
procedures.

1.3 Getting Started With the TCK
This section provides an general overview of what needs to be done to install, set up, test, and use
the Faces TCK. These steps are explained in more detail in subsequent chapters of this guide.

1. Make sure that the following software has been correctly installed on the system:

• Jakarta EE 10.0 CI such as Eclipse Mojarra 4.0, or Eclipse GlassFish 7.0, or, at a minimum, a Web
server with a Servlet container

• Java SE 11

• A CI for Faces 4.0. One example is Eclipse Mojarra 4.0.

• Faces TCK version 4.0

• The Faces 4.0 Vendor Implementation (VI)
See the documentation for each of these software applications for installation instructions. See
Chapter 3, "Installation," for instructions on installing the Faces TCK.

1. Set up the Faces TCK software.
See Chapter 4, "Setup and Configuration," for details about the following steps.

1. Set up your shell environment.

2. Set the required System properties.

2. Test the Faces 4.0 implementation.

8

rules.html#CJAJEAEI
rules.html#CJAJEAEI
config.html#GBFVV
install.html#GBFTP
config.html#GBFVV

Test the Faces implementation installation by running the test suite. See Chapter 5,
"Executing Tests."

9

using.html#GBFWO
using.html#GBFWO

2 Procedure for Certification
This chapter describes the compatibility testing procedure and compatibility requirements for
Jakarta Faces. This chapter contains the following sections:

• Certification Overview

• Compatibility Requirements

• Test Appeals Process

• Specifications for Jakarta Faces

• Libraries for Jakarta Faces

2.1 Certification Overview
The certification process for Faces 4.0 consists of the following activities:

• Install the appropriate version of the Technology Compatibility Kit (TCK) and execute it in
accordance with the instructions in this User’s Guide.

• Ensure that you meet the requirements outlined in Compatibility Requirements below.

• Certify to the Eclipse Foundation that you have finished testing and that you meet all of the
compatibility requirements, as required by the Eclipse Foundation TCK License.

2.2 Compatibility Requirements
The compatibility requirements for Faces 4.0 consist of meeting the requirements set forth by the
rules and associated definitions contained in this section.

2.2.1 Definitions

These definitions are for use only with these compatibility requirements and are not intended for
any other purpose.

Table 2-1 Definitions

10

#CJAFFDGI
#CJAFGIGG
#CJAIIBDJ
#CJAJECIE
#CJABAHGI
#CJAFGIGG

Term Definition

API Definition Product A Product for which the only Java class files contained in the product are
those corresponding to the application programming interfaces defined
by the Specifications, and which is intended only as a means for formally
specifying the application programming interfaces defined by the
Specifications.

Computational
Resource

A piece of hardware or software that may vary in quantity, existence, or
version, which may be required to exist in a minimum quantity and/or at
a specific or minimum revision level so as to satisfy the requirements of
the Test Suite.

Examples of computational resources that may vary in quantity are RAM
and file descriptors.

Examples of computational resources that may vary in existence (that is,
may or may not exist) are graphics cards and device drivers.

Examples of computational resources that may vary in version are
operating systems and device drivers.

Configuration
Descriptor

Any file whose format is well defined by a specification and which
contains configuration information for a set of Java classes, archive, or
other feature defined in the specification.

Conformance Tests All tests in the Test Suite for an indicated Technology Under Test, as
released and distributed by the Eclipse Foundation, excluding those tests
on the published Exclude List for the Technology Under Test.

Container An implementation of the associated Libraries, as specified in the
Specifications, and a version of a Java Platform, Standard Edition
Runtime Product, as specified in the Specifications, or a later version of a
Java Platform, Standard Edition Runtime Product that also meets these
compatibility requirements.

Documented Made technically accessible and made known to users, typically by means
such as marketing materials, product documentation, usage messages, or
developer support programs.

Exclude List The most current list of tests, released and distributed by the Eclipse
Foundation, that are not required to be passed to certify conformance.
The Jakarta EE Specification Committee may add to the Exclude List for
that Test Suite as needed at any time, in which case the updated TCK
version supplants any previous Exclude Lists for that Test Suite.

Libraries The class libraries, as specified through the Jakarta EE Specification
Process (JESP), for the Technology Under Test.

The Libraries for Jakarta Faces are listed at the end of this chapter.

11

Term Definition

Location Resource A location of classes or native libraries that are components of the test
tools or tests, such that these classes or libraries may be required to exist
in a certain location in order to satisfy the requirements of the test suite.

For example, classes may be required to exist in directories named in a
CLASSPATH variable, or native libraries may be required to exist in
directories named in a PATH variable.

Maintenance Lead The corresponding Jakarta EE Specification Project is responsible for
maintaining the Specification, and the TCK for the Technology. The
Specification Project Team will propose revisions and updates to the
Jakarta EE Specification Committee which will approve and release new
versions of the specification and TCK.

Operating Mode Any Documented option of a Product that can be changed by a user in
order to modify the behavior of the Product.

For example, an Operating Mode can be binary (enable/disable
optimization), an enumeration (select from a list of protocols), or a range
(set the maximum number of active threads).

Note that an Operating Mode may be selected by a command line switch,
an environment variable, a GUI user interface element, a configuration
or control file, etc.

Product A vendor’s product in which the Technology Under Test is implemented
or incorporated, and that is subject to compatibility testing.

Product Configuration A specific setting or instantiation of an Operating Mode.

For example, a Product supporting an Operating Mode that permits user
selection of an external encryption package may have a Product
Configuration that links the Product to that encryption package.

Rebuildable Tests Tests that must be built using an implementation-specific mechanism.
This mechanism must produce specification-defined artifacts. Rebuilding
and running these tests against a known compatible implementation
verifies that the mechanism generates compatible artifacts.

Resource A Computational Resource, a Location Resource, or a Security Resource.

Rules These definitions and rules in this Compatibility Requirements section of
this User’s Guide.

Runtime The Containers specified in the Specifications.

Security Resource A security privilege or policy necessary for the proper execution of the
Test Suite.

For example, the user executing the Test Suite will need the privilege to
access the files and network resources necessary for use of the Product.

12

Term Definition

Specifications The documents produced through the Jakarta EE Specification Process
(JESP) that define a particular Version of a Technology.

The Specifications for the Technology Under Test are referenced later in
this chapter.

Technology Specifications and one or more compatible implementations produced
through the Jakarta EE Specification Process (JESP).

Technology Under Test Specifications and a compatible implementation for Jakarta Faces Version
4.0.

Test Suite The requirements, tests, and testing tools distributed by the Maintenance
Lead as applicable to a given Version of the Technology.

Version A release of the Technology, as produced through the Jakarta EE
Specification Process (JESP).

2.2.2 Rules for Jakarta Faces Products

The following rules apply for each version of an operating system, software component, and
hardware platform Documented as supporting the Product:

Faces1 The Product must be able to satisfy all applicable compatibility requirements, including
passing all Conformance Tests, in every Product Configuration and in every combination of Product
Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product
Configuration, and combination of Product Configurations, of those Operating Modes.

Faces1.1 If an Operating Mode controls a Resource necessary for the basic execution of the Test
Suite, testing may always use a Product Configuration of that Operating Mode providing that
Resource, even if other Product Configurations do not provide that Resource. Notwithstanding such
exceptions, each Product must have at least one set of Product Configurations of such Operating
Modes that is able to pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy (i.e., Security
Resource) which has one or more Product Configurations that cause Conformance Tests to fail may
be tested using a Product Configuration that allows all Conformance Tests to pass.

Faces1.2 A Product Configuration of an Operating Mode that causes the Product to report only
version, usage, or diagnostic information is exempted from these compatibility rules.

Faces1.3 An API Definition Product is exempt from all functional testing requirements defined
here, except the signature tests.

Faces2 Some Conformance Tests may have properties that may be changed. Properties that can be
changed are identified in the configuration interview. Apart from changing such properties and

13

other allowed modifications described in this User’s Guide (if any), no source or binary code for a
Conformance Test may be altered in any way without prior written permission. Any such allowed
alterations to the Conformance Tests will be provided via the Jakarta EE Specification Project
website and apply to all vendor compatible implementations.

Faces3 The testing tools supplied as part of the Test Suite or as updated by the Maintenance Lead
must be used to certify compliance.

Faces4 The Exclude List associated with the Test Suite cannot be modified.

Faces5 The Maintenance Lead can define exceptions to these Rules. Such exceptions would be
made available as above, and will apply to all vendor implementations.

Faces6 All hardware and software component additions, deletions, and modifications to a
Documented supporting hardware/software platform, that are not part of the Product but required
for the Product to satisfy the compatibility requirements, must be Documented and available to
users of the Product.

For example, if a patch to a particular version of a supporting operating system is required for the
Product to pass the Conformance Tests, that patch must be Documented and available to users of
the Product.

Faces7 The Product must contain the full set of public and protected classes and interfaces for all
the Libraries. Those classes and interfaces must contain exactly the set of public and protected
methods, constructors, and fields defined by the Specifications for those Libraries. No subsetting,
supersetting, or modifications of the public and protected API of the Libraries are allowed except
only as specifically exempted by these Rules.

Faces7.1 If a Product includes Technologies in addition to the Technology Under Test, then it must
contain the full set of combined public and protected classes and interfaces. The API of the Product
must contain the union of the included Technologies. No further modifications to the APIs of the
included Technologies are allowed.

Faces8 Except for tests specifically required by this TCK to be rebuilt (if any), the binary
Conformance Tests supplied as part of the Test Suite or as updated by the Maintenance Lead must
be used to certify compliance.

Faces9 The functional programmatic behavior of any binary class or interface must be that defined
by the Specifications.

2.3 Test Appeals Process
Jakarta has a well established process for managing challenges to its TCKs. Any implementor may
submit a challenge to one or more tests in the Faces TCK as it relates to their implementation.
Implementor means the entity as a whole in charge of producing the final certified release.
Challenges filed should represent the consensus of that entity.

14

2.3.1 Valid Challenges

Any test case (e.g., test class, @Test method), test case configuration (e.g., deployment descriptor),
test beans, annotations, and other resources considered part of the TCK may be challenged.

The following scenarios are considered in scope for test challenges:

• Claims that a test assertion conflicts with the specification.

• Claims that a test asserts requirements over and above that of the specification.

• Claims that an assertion of the specification is not sufficiently implementable.

• Claims that a test is not portable or depends on a particular implementation.

2.3.2 Invalid Challenges

The following scenarios are considered out of scope for test challenges and will be immediately
closed if filed:

• Challenging an implementation’s claim of passing a test. Certification is an honor system and
these issues must be raised directly with the implementation.

• Challenging the usefulness of a specification requirement. The challenge process cannot be used
to bypass the specification process and raise in question the need or relevance of a specification
requirement.

• Claims the TCK is inadequate or missing assertions required by the specification. See the
Improvement section, which is outside the scope of test challenges.

• Challenges that do not represent a consensus of the implementing community will be closed
until such time that the community does agree or agreement cannot be made. The test challenge
process is not the place for implementations to initiate their own internal discussions.

• Challenges to tests that are already excluded for any reason.

• Challenges that an excluded test should not have been excluded and should be re-added should
be opened as a new enhancement request

Test challenges must be made in writing via the Faces specification project issue tracker as
described in Section 2.3.3, "TCK Test Appeals Steps."

All tests found to be invalid will be placed on the Exclude List for that version of the Faces TCK.

2.3.3 TCK Test Appeals Steps

1. Challenges should be filed via the Jakarta Faces specification project’s issue tracker using the
label challenge and include the following information:

◦ The relevant specification version and section number(s)

◦ The coordinates of the challenged test(s)

◦ The exact TCK and exclude list versions

15

#CJAJEAEI

◦ The implementation being tested, including name and company

◦ The full test name

◦ A full description of why the test is invalid and what the correct behavior is believed to be

◦ Any supporting material; debug logs, test output, test logs, run scripts, etc.

2. Specification project evaluates the challenge.
Challenges can be resolved by a specification project lead, or a project challenge triage team,
after a consensus of the specification project committers is reached or attempts to gain
consensus fails. Specification projects may exercise lazy consensus, voting or any practice that
follows the principles of Eclipse Foundation Development Process. The expected timeframe for
a response is two weeks or less. If consensus cannot be reached by the specification project for a
prolonged period of time, the default recommendation is to exclude the tests and address the
dispute in a future revision of the specification.

3. Accepted Challenges.
A consensus that a test produces invalid results will result in the exclusion of that test from
certification requirements, and an immediate update and release of an official distribution of
the TCK including the new exclude list. The associated challenge issue must be closed with an
accepted label to indicate it has been resolved.

4. Rejected Challenges and Remedy.
When a`challenge` issue is rejected, it must be closed with a label of invalid to indicate it has
been rejected. There appeal process for challenges rejected on technical terms is outlined in
Escalation Appeal. If, however, an implementer feels the TCK challenge process was not
followed, an appeal issue should be filed with specification project’s TCK issue tracker using the
label challenge-appeal. A project lead should escalate the issue with the Jakarta EE Specification
Committee via email (jakarta.ee-spec@eclipse.org). The committee will evaluate the matter
purely in terms of due process. If the appeal is accepted, the original TCK challenge issue will be
reopened and a label of appealed-challenge added, along with a discussion of the appeal
decision, and the challenge-appeal issue with be closed. If the appeal is rejected, the challenge-
appeal issue should closed with a label of invalid.

5. Escalation Appeal.
If there is a concern that a TCK process issue has not been resolved satisfactorily, the Eclipse
Development Process Grievance Handling procedure should be followed to escalate the
resolution. Note that this is not a mechanism to attempt to handle implementation specific
issues.

2.4 Specifications for Jakarta Faces
The Jakarta Faces specification is available from the specification project web-site:
https://jakarta.ee/specifications/faces/4.0/.

16

mailto:jakarta.ee-spec@eclipse.org
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://jakarta.ee/specifications/faces/4.0/

2.5 Libraries for Jakarta Faces
The following is a list of the packages comprising the required class libraries for Faces 4.0:

• jakarta.faces

• jakarta.faces.application

• jakarta.faces.bean

• jakarta.faces.component

• jakarta.faces.component.behavior

• jakarta.faces.component.html

• jakarta.faces.component.visit

• jakarta.faces.context

• jakarta.faces.convert

• jakarta.faces.el

• jakarta.faces.event

• jakarta.faces.lifecycle

• jakarta.faces.model

• jakarta.faces.render

• jakarta.faces.validator

• jakarta.faces.view

• jakarta.faces.view.facelets

• jakarta.faces.webapp

For the latest list of packages, also see:

https://jakarta.ee/specifications/faces/4.0/

17

https://jakarta.ee/specifications/faces/4.0/

3 Installation
This chapter explains how to install the Jakarta Faces TCK software.

After installing the software according to the instructions in this chapter, proceed to Chapter 4,
"Setup and Configuration," for instructions on configuring your test environment.

3.1 Obtaining a Compatible Implementation
Each compatible implementation (CI) will provide instructions for obtaining their implementation.
Eclipse Mojarra 4.0 is a compatible implementation which may be obtained from
https://projects.eclipse.org/projects/ee4j.mojarra

3.2 Installing the Software
Before you can run the Faces TCK tests, you must install and set up the following software
components:

• Jakarta EE 10.0 CI such as Eclipse Mojarra 4.0, or Eclipse GlassFish 7.0, or, at a minimum, a Web
server with a Servlet container

• Java SE 11

• Apache Maven 3.6.3+

• A CI for Faces 4.0, one example is Eclipse Mojarra 4.0

• Faces TCK version 4.0

• The Faces 4.0 Vendor Implementation (VI)

Follow these steps:

1. Install the Java SE 11 software, if it is not already installed.
Download and install the Java SE 11 software from http://www.oracle.com/technetwork/java/
javase/downloads/index.html. Refer to the installation instructions that accompany the software
for additional information.

2. Install the build tool Apache Maven 3.6.3+ that will be used to run the TCK, if it is not already
installed, for running the tests.

3. Install the Faces TCK 4.0 software.

1. Copy or download the Faces TCK software to your local system.
You can obtain the Faces TCK software from the Jakarta EE web site https://jakarta.ee/
specifications/faces/4.0/.

2. Use the unzip command to extract the bundle in the directory of your choice:
unzip jakarta-faces-tck-4.0.0.zip

18

config.html#GBFVV
config.html#GBFVV
https://projects.eclipse.org/projects/ee4j.mojarra
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jakarta.ee/specifications/faces/4.0/
https://jakarta.ee/specifications/faces/4.0/

4. Install the Jakarta EE 10.0 CI software (the servlet Web container used for running the Faces
TCK with the Faces 4.0 CI), if it is not already installed.
Download and install the Servlet Web container with the Faces 4.0 CI used for running the Faces
TCK 4.0, represented by a Jakarta EE 10.0 CI. You are free to use any CI that is certified. The
following are some examples you can choose from:

◦ If you wish to use Eclipse Mojarra 4.0 you may obtain it from https://projects.eclipse.org/
projects/ee4j.mojarra

◦ If you wish to use Eclipse GlassFish 7.0 you may obtain it from https://projects.eclipse.org/
projects/ee4j.glassfish

5. Install a Faces 4.0 Compatible Implementation.
A Compatible Implementation is used to validate your initial configuration and setup of the
Faces TCK 4.0 tests, which are explained further in Chapter 4, "Setup and Configuration."
The Compatible Implementations for Faces are listed on the Jakarta EE Specifications web site:
https://jakarta.ee/specifications/faces/4.0/.

6. Install a Web server on which the Faces TCK test applications can be published for testing the
VI.

7. Install the Faces VI to be tested.
Follow the installation instructions for the particular VI under test.

19

https://projects.eclipse.org/projects/ee4j.mojarra
https://projects.eclipse.org/projects/ee4j.mojarra
https://projects.eclipse.org/projects/ee4j.glassfish
https://projects.eclipse.org/projects/ee4j.glassfish
config.html#GBFVV
https://jakarta.ee/specifications/faces/4.0/

4 Setup and Configuration



The Jakarta EE Specification process provides for any number of compatible
implementations. As additional implementations become available, refer to project
or product documentation from those vendors for specific TCK setup and
operational guidance.

Before proceeding with the instructions in this chapter, be sure to install all required software, as
described in Chapter 3, "Installation."

After completing the instructions in this chapter, proceed to Chapter 5, "Executing Tests," for
instructions on running the Faces TCK.

4.1 Configuring Your Environment to Run the TCK
Against the Compatible Implementation (CI)
After configuring your environment as described in this section, continue with the instructions in
Chapter 5, "Executing Tests."



In these instructions, variables in angle brackets need to be expanded for each
platform. For example, <JAVA_HOME> becomes $JAVA_HOME on Solaris/Linux and
%JAVA_HOME% on Windows. In addition, the forward slashes (/) used in all of the
examples need to be replaced with backslashes (\) for Windows. Finally, be sure to
use the appropriate separator for your operating system when specifying multiple
path entries (; on Windows, : on UNIX/Linux).

On Windows, you must escape any backslashes with an extra backslash in path
separators used in any of the following properties, or use forward slashes as a path
separator instead.

1. Set the following environment variables in your shell environment:

1. JAVA_HOME to the directory in which Java SE 11 is installed

2. M2_HOME to the directory in which the Apache Maven build tool is installed.

3. JAVAEE_HOME to the directory in which the Faces 4.0 CI has been installed

4. PATH to include the following directories: JAVA_HOME/bin, and M2_HOME/bin

2. Set the following System properties in pom.xml:

1. Set the webServerHost property to the name of the host on which Jakarta EE 10.0 CI is
running.
The default setting is localhost.

2. Set the webServerPort property to the port number of the host on which Jakarta EE 10.0 CI is
running.
The default setting is 8080.

20

install.html#GBFTP
using.html#GBFWO
using.html#GBFWO

3. Set the web.home property to the installation directory of Jakarta EE 10.0 CI.

3. Set the below jars to the classpath

1. JAR file for the Faces 4.0 API.
eg. ${web.home}/modules/jakarta.faces-api.jar.

2. Arquillian JAR arquillian-junit5-container Maven cordinates :

 <dependency>
 <groupId>org.jboss.arquillian.junit5</groupId>
 <artifactId>arquillian-junit5-container</artifactId>
 <version>1.7.0.Alpha10</version>
 </dependency>

3. JUnit 4 jars (4.13.2) Maven cordinates :

 <dependency>
 <groupId>org.junit</groupId>
 <artifactId>junit-bom</artifactId>
 <version>4.13.2</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>

4. sigtest-maven-plugin (1.5) to run the signature tests. Maven cordinates :

 <dependency>
 <groupId>org.netbeans.tools</groupId>
 <artifactId>sigtest-maven-plugin</artifactId>
 <version>1.5</version>
 </dependency>

5. Eclipse Mojarra 4.0 CI jars
For eg, if you are using the Eclipse Mojarra 4.0 CI below jars need to be added to Classpath

${web.home}/modules/jakarta.inject-api.jar:
${web.home}/modules/jakarta.annotation-api.jar:
${web.home}/modules/jakarta.xml.bind-api.jar:
${web.home}/modules/jakarta.activation.jar:

21

4.2 Configuring Your Environment to Run the TCK
Against the Vendor Implementation (VI)
Follow the instructions above, customized as necessary for the Vendor implementation. A custom
deployment handler will need to be created for the Vendor implementation.

22

5 Executing Tests
The Faces TCK uses the Junit and Jboss Arquillian frameworks to execute the tests.

This chapter includes the following topics:

• Starting the tests

• Running a Subset of the Tests

• Running the TCK Against your selected CI

• Running the TCK Against a Vendor’s Implementation

• Test Reports


The instructions in this chapter assume that you have installed and configured
your test environment as described in Chapter 3, "Installation," and Chapter 4,
"Setup and Configuration,", respectively.

5.1 Starting the tests
The Faces TCK can be run from the command line in your shell environment.


The mvn command referenced in the following two procedures and elsewhere in
this guide is the Apache Maven build tool, which will need to be downloaded
separately.

5.1.1 To Start Tests in Command-Line Mode

Start the Junit tests using the following command:

mvn verify

Example 5-1 Faces TCK Signature Tests

To run the Faces TCK signature tests, enter the following commands:

mvn -f faces-signaturetest/pom.xml verify

Example 5-2 Single Test Directory

To run a single test directory, enter the following commands:

23

#GBFUZ
#GBFWM
#GCLRR
#GCLRZ
#GBFVK
install.html#GBFTP
config.html#GBFVV
config.html#GBFVV

mvn -f faces40//pom.xml verify

Example 5-3 Subset of Test Directories

To run a subset of test directories, enter the following commands:

mvn -f faces40/cdi/pom.xml verify

5.2 Running a Subset of the Tests
Use the following modes to run a subset of the tests:

• Section 5.2.1, "To Run a Subset of Tests in Command-Line Mode"

5.2.1 To Run a Subset of Tests in Command-Line Mode

Start the test run by executing the following command:

mvn -f faces40/cdi/pom.xml verify

The tests in the directory and its subdirectories are run.

5.3 Running the TCK Against another CI
Some test scenarios are designed to ensure that the configuration and deployment of all the
prebuilt Faces TCK tests against one Compatible Implementation are successful operating with
other compatible implementations, and that the TCK is ready for compatibility testing against the
Vendor and Compatible Implementations.

1. Verify that you have followed the configuration instructions in Section 4.1, "Configuring Your
Environment to Run the TCK Against the Compatible Implementation."

2. If required, verify that you have completed the steps in Section 4.3.2, "Deploying the Prebuilt
Archives."

3. Run the tests, as described in Section 5.1, "Starting the tests," and, if desired, Section 5.2,
"Running a Subset of the Tests."

24

#GBFWK
config.html#GBFVU
config.html#GBFVU
config.html#GCLIW
config.html#GCLIW
#GBFUZ
#GBFWM
#GBFWM

5.4 Running the TCK Against a Vendor’s
Implementation
This test scenario is one of the compatibility test phases that all Vendors must pass.

1. Verify that you have followed the configuration instructions in Section 4.2, "Configuring Your
Environment to Repackage and Run the TCK Against the Vendor Implementation."

2. If required, verify that you have completed the steps in Section 4.3.3, "Deploying the Test
Applications Against the Vendor Implementation."

3. Run the tests, as described in Section 5.1, "Starting the tests," and, if desired, Section 5.2,
"Running a Subset of the Tests."

5.5 Test Reports
A set of report files is created for every test run. These report files can be found in the target
directory that the test is run. After a test run is completed, the Junit framework writes reports for
the test run.

25

config.html#GCLHU
config.html#GCLHU
config.html#GCLIL
config.html#GCLIL
#GBFUZ
#GBFWM
#GBFWM

6 Debugging Test Problems
There are a number of reasons that tests can fail to execute properly. This chapter provides some
approaches for dealing with these failures.

This chapter includes the following topics:

• Overview

• Test Information

• Configuration Failures

6.1 Overview
The goal of a test run is for all tests in the test suite that are not filtered out to have passing results.
If the root test suite folder contains tests with errors or failing results, you must troubleshoot and
correct the cause to satisfactorily complete the test run.

• Errors: Tests with errors could not be executed by the Junit framework. These errors usually
occur because the test environment is not properly configured.

• Failures: Tests that fail were executed but had failing results.

For every test run, the Junit framework creates a set of report files in the target directory.

If a large number of tests failed, you should read Configuration Failures to see if a configuration
issue is the cause of the failures.

6.2 Test Information
TBD

6.3 Configuration Failures
Configuration failures are easily recognized because many tests fail the same way. When all your
tests begin to fail, you may want to stop the run immediately and start viewing individual test
output.

26

#GBFYP
#GBFVP
#GBFYF
#GBFYF

A Frequently Asked Questions
This appendix contains the following questions.

• Where do I start to debug a test failure?

• How do I restart a crashed test run?

• What would cause tests be added to the exclude list?

A.1 Where do I start to debug a test failure?
TBD

A.2 How do I restart a crashed test run?
TBD

A.3 What would cause tests be added to the exclude
list?
The exclude file (docs/TCK-Exclude-List.txt) contains all tests that are not required to be run. The
following is a list of reasons for a test to be included in the Exclude List:

• An error in a Compatible Implementation that does not allow the test to execute properly has
been discovered.

• An error in the specification that was used as the basis of the test has been discovered.

• An error in the test has been discovered.

27

#GBFYQ
#GBFYR
#GBFWU

Appendix B is not used for the Faces TCK.

28

	TCK User’s Guide for Technology Implementors
	Table of Contents
	Eclipse Foundation
	Preface
	Who Should Use This Book
	Before You Read This Book
	Typographic Conventions
	Shell Prompts in Command Examples

	1 Introduction
	1.1 Compatibility Testing
	1.2 About the TCK
	1.3 Getting Started With the TCK

	2 Procedure for Certification
	2.1 Certification Overview
	2.2 Compatibility Requirements
	2.3 Test Appeals Process
	2.4 Specifications for Jakarta Faces
	2.5 Libraries for Jakarta Faces

	3 Installation
	3.1 Obtaining a Compatible Implementation
	3.2 Installing the Software

	4 Setup and Configuration
	4.1 Configuring Your Environment to Run the TCK Against the Compatible Implementation (CI)
	4.2 Configuring Your Environment to Run the TCK Against the Vendor Implementation (VI)

	5 Executing Tests
	5.1 Starting the tests
	5.2 Running a Subset of the Tests
	5.3 Running the TCK Against another CI
	5.4 Running the TCK Against a Vendor’s Implementation
	5.5 Test Reports

	6 Debugging Test Problems
	6.1 Overview
	6.2 Test Information
	6.3 Configuration Failures

	A Frequently Asked Questions
	A.1 Where do I start to debug a test failure?
	A.2 How do I restart a crashed test run?
	A.3 What would cause tests be added to the exclude list?

