Gradle User Manual
Version 8.7

Version 8.7

Table of Contents

OVERVIEW
Gradle User Manual
The User Manual
RELEASES
Installing Gradle
Compatibility Matrix
The Feature Lifecycle
RUNNING GRADLE BUILDS
CORE CONCEPTS
Gradle Basics
Gradle Wrapper Basics
Command-Line Interface Basics
Settings File Basics
Build File Basics
Dependency Management Basics
Task Basics
Plugin Basics
Gradle Incremental Builds and Build Caching
Build Scans
OTHER TOPICS
Continuous Builds
AUTHORING GRADLE BUILDS
THE BASICS
Gradle Directories
Multi-Project Build Basics
Build Lifecycle
Writing Settings Files
Writing Build Scripts
Using Tasks
Writing Tasks
Using Plugins
Writing Plugins
STRUCTURING BUILDS
Structuring Projects with Gradle
Declaring Dependencies between Subprojects
Sharing Build Logic between Subprojects
Composite Builds

Configuration On Demand

o o0 o U1 U

13
15
18
19
19
21
23
25
27
29
31
34
37
40
43
43
45
46
46
48
56
61
67
84
95
98
118
123
123
130
134
142
152

DEVELOPING TASKS 154

Tasks 154
Lifecycle Tasks 179
Actionable Tasks 194
Configuring Tasks Lazily 211
Developing Parallel Tasks 234
Advanced Tasks 249
DEVELOPING PLUGINS 266
Understanding Plugins 266
Understanding Implementation Options for Plugins 275
Implementing Pre-compiled Script Plugins 277
Implementing Binary Plugins 283
Testing Gradle plugins 311
Publishing Plugins to the Gradle Plugin Portal 324
BEST PRACTICES 334
Organizing Gradle Projects 334
Best practices for authoring maintainable builds 340
OTHER TOPICS 351
Gradle-managed Directories 351
Working With Files 358
Logging 410
Avoiding traps 418
Configuring the Build Environment 420
Initialization Scripts 435
Developing Custom Gradle Types 443
Shared Build Services 452
Dataflow Actions 461
Testing Build Logic with TestKit 464
Using Ant from Gradle 475
AUTHORING JVM BUILDS 492
Building Java & JVM projects 492
Testing in Java & JVM projects 517
Managing Dependencies of JVM Projects 550
JAVA TOOLCHAINS 555
Toolchains for JVM projects 555
Toolchain Resolver Plugins 571
JVM PLUGINS 573
The Java Library Plugin 573
The Application Plugin 585
The Java Platform Plugin 592

The Groovy Plugin 598

The Scala Plugin 607

WORKING WITH DEPENDENCIES 619
Dependency Management Terminology 619
THE BASICS 623
Dependency Management 623
Declaring repositories 626
Declaring dependencies 659
Understanding the difference between libraries and applications 682
View and Debug Dependencies 683
Understanding dependency resolution 689
Verifying dependencies 697
DECLARING VERSIONS 723
Declaring Versions and Ranges 723
Declaring Rich Versions 727
Handling versions which change over time 730
Locking dependency versions 739
CONTROLLING TRANSITIVES 749
Upgrading versions of transitive dependencies 749
Downgrading versions and excluding dependencies 750
Sharing dependency versions between projects 757
Aligning dependency versions 780
Handling mutually exclusive dependencies 787
Fixing metadata with component metadata rules 791
Customizing resolution of a dependency directly 814
Preventing accidental dependency upgrades 832
PRODUCING AND CONSUMING VARIANTS OF LIBRARIES 839
Declaring Capabilities of a Library 839
Modeling library features 843
Understanding variant selection 854
Working with Variant Attributes 872
Sharing outputs between projects 879
Transforming dependency artifacts on resolution 889
PUBLISHING LIBRARIES 906
Publishing a project as module 906
Understanding Gradle Module Metadata 910
Signing artifacts 915
Customizing publishing 916
The Maven Publish Plugin 927
The Ivy Publish Plugin 944
OPTIMIZING BUILD PERFORMANCE 955

Improve the Performance of Gradle Builds 955

Gradle Daemon 975

File System Watching 981
Incremental build 984
Configuration cache 1021
Inspecting Gradle Builds 1061
USING THE BUILD CACHE 1073
Build Cache 1073
Use cases for the build cache 1086
Build cache performance 1089
Important concepts 1093
Caching Java projects 1098
Caching Android projects 1103
Debugging and diagnosing cache misses 1106
Solving common problems 1114
GRADLE ON CI 1125
Executing Gradle builds on Jenkins 1125
Executing Gradle builds on TeamCity 1128
Executing Gradle builds on GitHub Actions 1135
Executing Gradle builds on Travis CI 1142
REFERENCE 1146
Command-Line Interface Reference 1146
Gradle Wrapper Reference 1165
Gradle Plugin Reference 1175
Gradle & Third-party Tools 1178
GRADLE DSLs and API 1183
A Groovy Build Script Primer 1183
Gradle Kotlin DSL Primer 1188
LICENSE INFORMATION 1220

License Information 1220

OVERVIEW

Gradle User Manual

Gradle Build Tool

Gradle Build Tool is a fast, dependable, and adaptable open-source build
automation tool with an elegant and extensible declarative build language.

In this User Manual, Gradle Build Tool is abbreviated Gradle.

Why Gradle?

Gradle is a widely used and mature tool with an active community and a strong developer
ecosystem.

* Gradle is the most popular build system for the JVM and is the default system for Android and
Kotlin Multi-Platform projects. It has a rich community plugin ecosystem.

* Gradle can automate a wide range of software build scenarios using either its built-in
functionality, third-party plugins, or custom build logic.

* Gradle provides a high-level, declarative, and expressive build language that makes it easy to
read and write build logic.

» Gradle is fast, scalable, and can build projects of any size and complexity.

* Gradle produces dependable results while benefiting from optimizations such as incremental
builds, build caching, and parallel execution.

Gradle, Inc. provides a free service called Build Scan® that provides extensive information and
insights about your builds. You can view scans to identify problems or share them for debugging
help.

Supported Languages and Frameworks

Gradle supports Android, Java, Kotlin Multiplatform, Groovy, Scala, Javascript, and C/C++.

G § {0 K

Compatible IDEs

All major IDEs support Gradle, including Android Studio, Intelli] IDEA, Visual Studio Code, Eclipse,

https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Build_automation
https://scans.gradle.com/

and NetBeans.

® 8 0Sx

You can also invoke Gradle via its command-line interface (CLI) in your terminal or through your
continuous integration (CI) server.

Education
The Gradle User Manual is the official documentation for the Gradle Build Tool.

* Getting Started Tutorial — Learn Gradle basics and the benefits of building your App with
Gradle.

* Training Courses — Head over to the courses page to sign up for free Gradle training.

Support

* Forum — The fastest way to get help is through the Gradle Forum.

* Slack — Community members and core contributors answer questions directly on our Slack
Channel.

Licenses

Gradle Build Tool source code is open and licensed under the Apache License 2.0. Gradle user
manual and DSL reference manual are licensed under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

The User Manual

Explore our guides and examples to use Gradle.

Releases

Information on Gradle releases and how to install Gradle is found on the Installation page.

Content
The Gradle User Manual is broken down into the following sections:

Running Gradle Builds

Learn Gradle basics and how to use Gradle to build your project.

Authoring Gradle Builds

Develop tasks and plugins to customize your build.

getting_started_eng.pdf#introduction
https://gradle.org/courses/
https://discuss.gradle.org/
https://gradle-community.slack.com/
https://gradle-community.slack.com/
https://github.com/gradle/gradle/blob/master/LICENSE
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Authoring JVM Builds

Use Gradle with your Java project.

Working with Dependencies

Add dependencies to your build.

Optimizing Builds

Use caches to optimize your build and understand the Gradle daemon, incremental builds and
file system watching.

Gradle on CI

Gradle integration with popular continuous integration (CI) servers.

Reference

1. Gradle’s API Javadocs
2. Gradle’s Groovy DSL
3. Gradle’s Kotlin DSL

4. Gradle’s Core Plugins

https://docs.gradle.org/8.7/javadoc/index.html
https://docs.gradle.org/8.7/dsl/index.html
https://docs.gradle.org/8.7/kotlin-dsl/index.html

RELEASES

Installing Gradle

Gradle Installation

If all you want to do is run an existing Gradle project, then you don’t need to install Gradle if the
build uses the Gradle Wrapper. This is identifiable by the presence of the gradlew or gradlew.bat
files in the root of the project:

)
—— gradle

| L—— wrapper @
—— gradlew ®
—— gradlew.bat ®
L—

@ Project root directory.
@ Gradle Wrapper.

® Scripts for executing Gradle builds.

If the gradlew or gradlew.bat files are already present in your project, you do not need to install
Gradle. But you need to make sure your system satisfies Gradle’s prerequisites.

You can follow the steps in the Upgrading Gradle section if you want to update the Gradle version
for your project. Please use the Gradle Wrapper to upgrade Gradle.

Android Studio comes with a working installation of Gradle, so you don’t need to install Gradle
separately when only working within that IDE.

If you do not meet the criteria above and decide to install Gradle on your machine, first check if
Gradle is already installed by running gradle -v in your terminal. If the command does not return
anything, then Gradle is not installed, and you can follow the instructions below.

You can install Gradle Build Tool on Linux, macOS, or Windows. The installation can be done
manually or using a package manager like SDKMAN! or Homebrew.

You can find all Gradle releases and their checksums on the releases page.

Prerequisites

Gradle runs on all major operating systems. It requires Java Development Kit (JDK) version 8 or
higher to run. You can check the compatibility matrix for more information.

To check, run java -version:

0 java -version

upgrading_version_8.pdf#upgrading_version_8
https://sdkman.io/
https://brew.sh/
https://gradle.org/releases
https://jdk.java.net/

openjdk version "11.0.18" 2023-01-17
OpenJDK Runtime Environment Homebrew (build 11.0.18+0)
Open]DK 64-Bit Server VM Homebrew (build 11.0.18+0, mixed mode)

0 java version "1.8.0_151"
Java(TM) SE Runtime Environment (build 1.8.0_151-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

Gradle uses the JDK it finds in your path, the JDK used by your IDE, or the JDK specified by your
project. In this example, the $PATH points to JDK17:

0 echo $PATH
/opt/homebrew/opt/openjdk@17/bin

You can also set the JAVA_HOME environment variable to point to a specific JDK installation directory.
This is especially useful when multiple JDKs are installed:

0 echo %JAVA_HOME%
C:\Program Files\Java\jdk1.7.0_80

0 echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/jdk-16.jdk/Contents/Home

Gradle supports Kotlin and Groovy as the main build languages. Gradle ships with its own Kotlin
and Groovy libraries, therefore they do not need to be installed. Existing installations are ignored
by Gradle.

See the full compatibility notes for Java, Groovy, Kotlin, and Android.

Linux installation

v Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). Gradle is deployed and
maintained by SDKMAN!:

0 sdk install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc. Linux package managers may distribute a modified version of Gradle
that is incompatible or incomplete when compared to the official version.

https://kotlinlang.org/
https://groovy-lang.org/
#ex-installing-with-a-package-manager
http://sdkman.io

v Installing manually

Step 1 - Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

* Complete (all) with docs and sources

We recommend downloading the bin file; it is a smaller file that is quick to download (and the
latest documentation is available online).

Step 2 - Unpack the distribution

Unzip the distribution zip file in the directory of your choosing, e.g.:

0 mkdir /opt/gradle

0 unzip -d /opt/gradle gradle-8.7-bin.zip

0 1s /opt/gradle/gradle-8.7

LICENSE NOTICE bin README init.d 1ib media

Step 3 - Configure your system environment
To install Gradle, the path to the unpacked files needs to be in your Path. Configure your PATH
environment variable to include the bin directory of the unzipped distribution, e.g.:

0 export PATH=$PATH:/opt/gradle/gradle-8.7/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, simply change
the GRADLE_HOME environment variable.

export GRADLE_HOME=/opt/gradle/gradle-8.7
export PATH=${GRADLE_HOME}/bin:${PATH}

macOS installation

v Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). Gradle is deployed and
maintained by SDKMAN!:

0 sdk install gradle

Using Homebrew:

#ex-installing-manually
https://gradle.org/releases
#ex-installing-with-a-package-manager
http://sdkman.io
http://brew.sh

0 brew install gradle

Using MacPorts:

0 sudo port install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc.

Installing manually

Step 1- Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

* Complete (all) with docs and sources

We recommend downloading the bin file; it is a smaller file that is quick to download (and the
latest documentation is available online).

Step 2 - Unpack the distribution

Unzip the distribution zip file in the directory of your choosing, e.g.:

0 mkdir /usr/local/gradle

0 unzip gradle-8.7-bin.zip -d /usr/local/gradle
0 1s /usr/local/gradle/gradle-8.7

LICENSE NOTICE README bin init.d 1ib

Step 3 - Configure your system environment

To install Gradle, the path to the unpacked files needs to be in your Path. Configure your PATH
environment variable to include the bin directory of the unzipped distribution, e.g.:

0 export PATH=$PATH:/usr/local/gradle/gradle-8.7/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, simply change
the GRADLE_HOME environment variable.

It’s a good idea to edit .bash_profile in your home directory to add GRADLE_HOME variable:

export GRADLE_HOME=/usr/local/gradle/gradle-8.7

https://www.macports.org
#ex-installing-manually
https://gradle.org/releases

export PATH=$GRADLE_HOME/bin:$PATH

Windows installation

v Installing manually

Step 1- Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

* Complete (all) with docs and sources
We recommend downloading the bin file.
Step 2 - Unpack the distribution
Create a new directory C:\Gradle with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was
downloaded. Double-click the ZIP archive to expose the content. Drag the content folder gradle-
8.7 to your newly created C:\Gradle folder.

Alternatively, you can unpack the Gradle distribution ZIP into C:\Gradle using the archiver tool of
your choice.

Step 3 - Configure your system environment
To install Gradle, the path to the unpacked files needs to be in your Path.

In File Explorer right-click on the This PC (or Computer) icon, then click Properties — Advanced
System Settings — Environmental Variables.

Under System Variables select Path, then click Edit. Add an entry for C:\Gradle\gradle-8.7\bin.
Click OK to save.

Alternatively, you can add the environment variable GRADLE_HOME and point this to the unzipped
distribution. Instead of adding a specific version of Gradle to your Path, you can add
%GRADLE_HOME%\bin to your Path. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

Verify the installation

Open a console (or a Windows command prompt) and run gradle -v to run gradle and display the
version, e.g.:

0 gradle -v

Gradle 8.7

#ex-installing-manually
https://gradle.org/releases

Build time: 2023-03-03 16:41:37 UTC

Revision: 7d6581558e226a580d91d399f7dfb9e3095¢c2b1d

Kotlin: 1.8.10

Groovy: 3.0.13

Ant: Apache Ant(TM) version 1.10.11 compiled on July 10 2021
JVM: 17.0.6 (Homebrew 17.0.6+0)

0S: Mac 0S X 13.2.1 aarchb4

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available
from the releases page) and following these verification instructions.

Compatibility Matrix

The sections below describe Gradle’s compatibility with several integrations. Versions not listed
here may or may not work.

Java

A Java version between 8 and 21 is required to execute Gradle. Java 22 and later versions are not
yet supported.

Java 6 and 7 can be used for compilation but are deprecated for use with testing. Testing with Java 6
and 7 will not be supported in Gradle 9.0.

Any fully supported version of Java can be used for compilation or testing. However, the latest Java
version may only be supported for compilation or testing, not for running Gradle. Support is
achieved using toolchains and applies to all tasks supporting toolchains.

See the table below for the Java version supported by a specific Gradle release:

Table 1. Java Compatibility

Java version Support for toolchains Support for running Gradle
8 N/A 2.0
9 N/A 4.3
10 N/A 4.7
11 N/A 5.0
12 N/A 5.4
13 N/A 6.0
14 N/A 6.3
15 6.7 6.7

16 7.0 7.0

https://gradle.org/releases

Java version Support for toolchains Support for running Gradle

17 7.3 7.3
18 7.5 7.5
19 7.6 7.6
20 8.1 8.3
21 8.4 8.5
22 8.7 N/A
23 N/A N/A
Kotlin

Gradle is tested with Kotlin 1.6.10 through 2.0.0-Beta3. Beta and RC versions may or may not work.

Table 2. Embedded Kotlin version

Minimum Gradle version Embedded Kotlin version Kotlin Language version
5.0 1.3.10 1.3
5.1 1.3.11 1.3
5.2 1.3.20 1.3
5.3 1.3.21 1.3
5.5 1.3.31 1.3
5.6 1.3.41 1.3
6.0 1.3.50 1.3
6.1 1.3.61 1.3
6.3 1.3.70 1.3
6.4 1.3.71 1.3
6.5 1.3.72 1.3
6.8 1.4.20 1.3
7.0 1.4.31 1.4
7.2 1.5.21 14
7.3 1.5.31 14
7.5 1.6.21 1.4
7.6 1.7.10 1.4
8.0 1.8.10 1.8
8.2 1.8.20 1.8
8.3 1.9.0 1.8

8.4 1.9.10 1.8

Minimum Gradle version Embedded Kotlin version Kotlin Language version

8.5 1.9.20 1.8
8.7 1.9.22 1.8
Groovy

Gradle is tested with Groovy 1.5.8 through 4.0.0.

Gradle plugins written in Groovy must use Groovy 3.x for compatibility with Gradle and Groovy
DSL build scripts.

Android

Gradle is tested with Android Gradle Plugin 7.3 through 8.2. Alpha and beta versions may or may
not work.

The Feature Lifecycle

Gradle is under constant development. New versions are delivered on a regular and frequent basis
(approximately every six weeks) as described in the section on end-of-life support.

Continuous improvement combined with frequent delivery allows new features to be available to
users early. Early users provide invaluable feedback, which is incorporated into the development
process.

Getting new functionality into the hands of users regularly is a core value of the Gradle platform.

At the same time, API and feature stability are taken very seriously and considered a core value of
the Gradle platform. Design choices and automated testing are engineered into the development
process and formalized by the section on backward compatibility.

The Gradle feature lifecycle has been designed to meet these goals. It also communicates to users of
Gradle what the state of a feature is. The term feature typically means an API or DSL method or
property in this context, but it is not restricted to this definition. Command line arguments and
modes of execution (e.g. the Build Daemon) are two examples of other features.

Feature States

Features can be in one of four states:

1. Internal
2. Incubating
3. Public

4. Deprecated

1. Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself.
They can change in any way at any point in time without any notice. Therefore, we recommend
avoiding the use of such features. Internal features are not documented. If it appears in this User
Manual, the DSL Reference, or the API Reference, then the feature is not internal.

Internal features may evolve into public features.

2. Incubating

Features are introduced in the incubating state to allow real-world feedback to be incorporated into
the feature before making it public. It also gives users willing to test potential future changes early
access.

A feature in an incubating state may change in future Gradle versions until it is no longer
incubating. Changes to incubating features for a Gradle release will be highlighted in the release
notes for that release. The incubation period for new features varies depending on the feature’s
scope, complexity, and nature.

Features in incubation are indicated. In the source code, all methods/properties/classes that are
incubating are annotated with incubating. This results in a special mark for them in the DSL and
API references.

If an incubating feature is discussed in this User Manual, it will be explicitly said to be in the
incubating state.

Feature Preview API

The feature preview API allows certain incubating features to be activated by adding
enableFeaturePreview('FEATURE') in your settings file. Individual preview features will be
announced in release notes.

When incubating features are either promoted to public or removed, the feature preview flags for
them become obsolete, have no effect, and should be removed from the settings file.

3. Public

The default state for a non-internal feature is public. Anything documented in the User Manual, DSL
Reference, or API reference that is not explicitly said to be incubating or deprecated is considered
public. Features are said to be promoted from an incubating state to public. The release notes for
each release indicate which previously incubating features are being promoted by the release.

A public feature will never be removed or intentionally changed without undergoing deprecation.
All public features are subject to the backward compatibility policy.

4. Deprecated

Some features may be replaced or become irrelevant due to the natural evolution of Gradle. Such
features will eventually be removed from Gradle after being deprecated. A deprecated feature may

https://docs.gradle.org/8.7/javadoc/org/gradle/api/Incubating.html

become stale until it is finally removed according to the backward compatibility policy.

Deprecated features are indicated to be so. In the source code, all methods/properties/classes that
are deprecated are annotated with “@java.lang.Deprecated” which is reflected in the DSL and API
References. In most cases, there is a replacement for the deprecated element, which will be
described in the documentation. Using a deprecated feature will result in a runtime warning in
Gradle’s output.

The use of deprecated features should be avoided. The release notes for each release indicate any
features being deprecated by the release.

Backward compatibility policy

Gradle provides backward compatibility across major versions (e.g., 1.x, 2.x, etc.). Once a public
feature is introduced in a Gradle release, it will remain indefinitely unless deprecated. Once
deprecated, it may be removed in the next major release. Deprecated features may be supported
across major releases, but this is not guaranteed.

Release end-of-life Policy
Every day, a new nightly build of Gradle is created.

This contains all of the changes made through Gradle’s extensive continuous integration tests
during that day. Nightly builds may contain new changes that may or may not be stable.

The Gradle team creates a pre-release distribution called a release candidate (RC) for each minor or
major release. When no problems are found after a short time (usually a week), the release
candidate is promoted to a general availability (GA) release. If a regression is found in the release
candidate, a new RC distribution is created, and the process repeats. Release candidates are
supported for as long as the release window is open, but they are not intended to be used for
production. Bug reports are greatly appreciated during the RC phase.

The Gradle team may create additional patch releases to replace the final release due to critical bug
fixes or regressions. For instance, Gradle 5.2.1 replaces the Gradle 5.2 release.

Once a release candidate has been made, all feature development moves on to the next release for
the latest major version. As such, each minor Gradle release causes the previous minor releases in
the same major version to become end-of-life (EOL). EOL releases do not receive bug fixes or
feature backports.

For major versions, Gradle will backport critical fixes and security fixes to the last minor in the
previous major version. For example, when Gradle 7 was the latest major version, several releases
were made in the 6.x line, including Gradle 6.9 (and subsequent releases).

As such, each major Gradle release causes:

* The previous major version becomes maintenance only. It will only receive critical bug fixes
and security fixes.

* The major version before the previous one to become end-of-life (EOL), and that release line
will not receive any new fixes.

RUNNING GRADLE BUILDS

CORE CONCEPTS

Gradle Basics

Gradle automates building, testing, and deployment of software from information in build
scripts.

Project Gradle
r———=—=—=—=—=) r———————— R
|

|

Test A
TestB
Test C

|
|
|
|
|
: Project_App.JAR
SRS — Ancliroid_:;p.APK
| Gradle_Plugin.ZIP
| Web_App.WAR
|
|
|
|

cl
Server)
Repository

build.gradle

source code

&

Dependencies

Gradle core concepts

Projects

A Gradle project is a piece of software that can be built, such as an application or a library.
Single project builds include a single project called the root project.

Multi-project builds include one root project and any number of subprojects.

Build Scripts

Build scripts detail to Gradle what steps to take to build the project.

Each project can include one or more build scripts.

Dependency Management

Dependency management is an automated technique for declaring and resolving external
resources required by a project.

Each project typically includes a number of external dependencies that Gradle will resolve during
the build.

Tasks

Tasks are a basic unit of work such as compiling code or running your test.

Each project contains one or more tasks defined inside a build script or a plugin.

Plugins

Plugins are used to extend Gradle’s capability and optionally contribute tasks to a project.

Gradle project structure

Many developers will interact with Gradle for the first time through an existing project.

The presence of the gradlew and gradlew.bat files in the root directory of a project is a clear
indicator that Gradle is used.

A Gradle project will look similar to the following:

project
gradle @
| F—— 1libs.versions.toml @
| L—— wrapper
| —— gradle-wrapper.jar
! L—— gradle-wrapper.properties
—— gradlew
[—— gradlew.bat
—— settings.gradle(.kts)
—— subproject-a
| —— build.gradle(.kts)
| L—— src
L—— subproject-b

—— build.gradle(.kts)
L— src

0 o ©900

@ Gradle directory to store wrapper files and more

@ Gradle version catalog for dependency management

® Gradle wrapper scripts

@ Gradle settings file to define a root project name and subprojects

® Gradle build scripts of the two subprojects - subproject-a and subproject-b

® Source code and/or additional files for the projects

Invoking Gradle

IDE

Gradle is built-in to many IDEs including Android Studio, Intelli] IDEA, Visual Studio Code, Eclipse,
and NetBeans.

gradle_ides.pdf#gradle_ides

Gradle can be automatically invoked when you build, clean, or run your app in the IDE.

It is recommended that you consult the manual for the IDE of your choice to learn more about how
Gradle can be used and configured.

Command line

Gradle can be invoked in the command line once installed. For example:

$ gradle build

NOTE Most projects do not use the installed version of Gradle.

Gradle Wrapper

The Wrapper is a script that invokes a declared version of Gradle and is the recommended way to
execute a Gradle build. It is found in the project root directory as a gradlew or gradlew.bat file:

$ gradlew build // Linux or 0SX
$ gradlew.bat build // Windows

Next Step: Learn about the Gradle Wrapper >>

Gradle Wrapper Basics

The recommended way to execute any Gradle build is with the Gradle Wrapper.

Project
===)
|
|

TestB

sub-project-1 Test C

|

|

| build.gradle -
: n| source code Build Flow z;oé(:;t;_A:ng:EK
| Gradle_Plugin.ZIP
|

|

|

|

|

Web_App.WAR

% build.gradle

source code

Plugins Dependencies

The Wrapper script invokes a declared version of Gradle, downloading it beforehand if necessary.

1. Download distribution
Gradle

Build

Server

3. Use distribution 2. Store and unpack distribution

Gradle

User Home

The Wrapper is available as a gradlew or gradlew.bat file.
The Wrapper provides the following benefits:

» Standardizes a project on a given Gradle version.
* Provisions the same Gradle version for different users.

» Provisions the Gradle version for different execution environments (IDEs, CI servers...).

Using the Gradle Wrapper

It is always recommended to execute a build with the Wrapper to ensure a reliable, controlled, and
standardized execution of the build.

Depending on the operating system, you run gradlew or gradlew.bat instead of the gradle command.

Typical Gradle invocation:
$ gradle build

To run the Wrapper on a Linux or OSX machine:
$./gradlew build

To run the Wrapper on Windows PowerShell:
$.\gradlew.bat build

The command is run in the same directory that the Wrapper is located in. If you want to run the
command in a different directory, you must provide the relative path to the Wrapper:

$../gradlew build

The following console output demonstrates the use of the Wrapper on a Windows machine, in the
command prompt (cmd), for a Java-based project:

$ gradlew.bat build

Downloading https://services.gradle.org/distributions/gradle-5.0-all.zip
Unzipping C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac2708rbd@ic8ih410r9132mv\gradle-5.0-all.zip to C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-al\ac2708rbd@ic8ih410r9132mv
Set executable permissions for: C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac2708rbd@ic8ih410r9132mv\gradle-5.0\bin\gradle

BUILD SUCCESSFUL in 12s
1 actionable task: 1 executed

Consult the Gradle Wrapper reference to learn more.

Next Step: Learn about the Gradle CLI >>

Command-Line Interface Basics

The command-line interface is the primary method of interacting with Gradle outside the IDE.

Project Gradle

e —————— | e ——————
|

|

TestA
TestB
Test C

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

</»] source code Build Flow

build.gradle

source code

Use of the Gradle Wrapper is highly encouraged.

Substitute ./gradlew (in macOS / Linux) or gradlew.bat (in Windows) for gradle in the following
examples.

Executing Gradle on the command line conforms to the following structure:
gradle [taskName...] [--option-name...]

Options are allowed before and after task names.
gradle [--option-name...] [taskName...]

If multiple tasks are specified, you should separate them with a space.
gradle [taskNamel taskName2...] [--option-name...]

Options that accept values can be specified with or without = between the option and argument.
The use of = is recommended.

gradle [...] --console=plain

Options that enable behavior have long-form options with inverses specified with --no-. The
following are opposites.

gradle [...] --build-cache
gradle [...] --no-build-cache

Many long-form options have short-option equivalents. The following are equivalent:

gradle --help
gradle -h

Command-line usage

The following sections describe the use of the Gradle command-line interface. Some plugins also
add their own command line options.

Executing tasks

To execute a task called taskName on the root project, type:

$ gradle :taskName

This will run the single taskName and all of its dependencies.

Specify options for tasks

To pass an option to a task, prefix the option name with -- after the task name:

$ gradle taskName --exampleOption=exampleValue

Consult the Gradle Command Line Interface reference to learn more.

Next Step: Learn about the Settings file >>

Settings File Basics

The settings file is the entry point of every Gradle project.

Test A
TestB
Test C

build.gradle
Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

source code Build Flow

build.gradle

source code

Plugins Dependencies

The primary purpose of the settings file is to add subprojects to your build.
Gradle supports single and multi-project builds.
* For single-project builds, the settings file is optional.
» For multi-project builds, the settings file is mandatory and declares all subprojects.

Settings script

The settings file is a script. It is either a settings.gradle file written in Groovy or a
settings.gradle.kts file in Kotlin.

The Groovy DSL and the Kotlin DSL are the only accepted languages for Gradle scripts.

https://docs.gradle.org/8.7/dsl/index.html
https://docs.gradle.org/8.7/kotlin-dsl/index.html

The settings file is typically found in the root directory of the project.

Let’s take a look at an example and break it down:

settings.gradle.kts
rootProject.name = "root-project" @
include("sub-project-a") @
include("sub-project-b")

include("sub-project-c")

@ Define the project name.

@ Add subprojects.

settings.gradle
rootProject.name = 'root-project’ @
include('sub-project-a") @
include('sub-project-b")

include('sub-project-c")

@ Define the project name.

@ Add subprojects.

1. Define the project name

The settings file defines your project name:

rootProject.name = "root-project”

There is only one root project per build.
2. Add subprojects

The settings file defines the structure of the project by including subprojects, if there are any:

include("app")
include("business-logic")
include("data-model")

Consult the Writing Settings File page to learn more.

Next Step: Learn about the Build scripts >>

Build File Basics

Generally, a build script details build configuration, tasks, and plugins.

Project

Test A
TestB
Test C

sub-project-1

% build.gradle @

|

|

|

|

|

l :
| Build Flow
|

|

|

|

|

|

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

sub-project-2

Plugins

Every Gradle build comprises at least one build script.
In the build file, two types of dependencies can be added:
1. The libraries and/or plugins on which Gradle and the build script depend.
2. The libraries on which the project sources (i.e., source code) depend.
Build scripts
The build script is either a build.gradle file written in Groovy or a build.gradle.kts file in Kotlin.
The Groovy DSL and the Kotlin DSL are the only accepted languages for Gradle scripts.

Let’s take a look at an example and break it down:

build.gradle.kts

plugins {
id("application") ©)
}

application {
mainClass = "com.example.Main" @

https://docs.gradle.org/8.7/dsl/index.html
https://docs.gradle.org/8.7/kotlin-dsl/index.html

@ Add plugins.

@ Use convention properties.

build.gradle

plugins {
id 'application' @
}

application {
mainClass = 'com.example.Main' @

}

@ Add plugins.

@ Use convention properties.

1. Add plugins
Plugins extend Gradle’s functionality and can contribute tasks to a project.
Adding a plugin to a build is called applying a plugin and makes additional functionality available.
plugins {
id("application")
}
The application plugin facilitates creating an executable JVM application.

Applying the Application plugin also implicitly applies the Java plugin. The java plugin adds Java
compilation along with testing and bundling capabilities to a project.

2. Use convention properties

A plugin adds tasks to a project. It also adds properties and methods to a project.

The application plugin defines tasks that package and distribute an application, such as the run
task.

The Application plugin provides a way to declare the main class of a Java application, which is
required to execute the code.

application {
mainClass = "com.example.Main"

java_plugin.pdf#java_plugin

In this example, the main class (i.e.,, the point where the program’s execution begins) is
com.example.Main.

Consult the Writing Build Scripts page to learn more.

Next Step: Learn about Dependency Management >>

Dependency Management Basics

Gradle has built-in support for dependency management.

Project Gradle
r——=-=-=-===) r————————
|

|

settings.gradle —h

TestB
sub-project-1 TestC

|

|

| build.gradle
: »| source code Build Flow /'zLoclifgltd_f:spJ:sK
| Gradle_Plugin.ZIP
|

|

|

|

|

Web_App.WAR

build.gradle

/»| source code

Plugins Dependencies

Dependency management is an automated technique for declaring and resolving external
resources required by a project.

Gradle build scripts define the process to build projects that may require external dependencies.
Dependencies refer to JARs, plugins, libraries, or source code that support building your project.

Version Catalog

Version catalogs provide a way to centralize your dependency declarations in a libs.versions.toml
file.

The catalog makes sharing dependencies and version configurations between subprojects simple. It
also allows teams to enforce versions of libraries and plugins in large projects.

The version catalog typically contains four sections:

1. [versions] to declare the version numbers that plugins and libraries will reference.

2. [libraries] to define the libraries used in the build files.
3. [bundles] to define a set of dependencies.

4. [plugins] to define plugins.

[versions]
androidGradlePlugin = "7.4.1"
mockito = "2.16.0"

[libraries]

googleMaterial = { group = "com.google.android.material", name = "material”, version =
"1.1.0-alphad5" }

mockitoCore = { module = "org.mockito:mockito-core", version.ref = "mockito" }

[plugins]
androidApplication = { id = "com.android.application”, version.ref =
"androidGradlePlugin" }

The file is located in the gradle directory so that it can be used by Gradle and IDEs automatically.
The version catalog should be checked into source control: gradle/libs.versions.toml.

Declaring Your Dependencies

To add a dependency to your project, specify a dependency in the dependencies block of your
build.gradle(.kts) file.

The following build.gradle.kts file adds a plugin and two dependencies to the project using the
version catalog above:

plugins {
alias(libs.plugins.androidApplication) @
}

dependencies {
// Dependency on a remote binary to compile and run the code
implementation(1libs.googleMaterial) @

// Dependency on a remote binary to compile and run the test code
testImplementation(libs.mockitoCore) ®

@ Applies the Android Gradle plugin to this project, which adds several features that are specific to
building Android apps.

@ Adds the Material dependency to the project. Material Design provides components for creating
a user interface in an Android App. This library will be used to compile and run the Kotlin
source code in this project.

® Adds the Mockito dependency to the project. Mockito is a mocking framework for testing Java

code. This library will be used to compile and run the test source code in this project.
Dependencies in Gradle are grouped by configurations.

* The material library is added to the implementation configuration, which is used for compiling
and running production code.

* The mockito-core library is added to the testImplementation configuration, which is used for
compiling and running test code.

NOTE There are many more configurations available.

Viewing Project Dependencies
You can view your dependency tree in the terminal using the ./gradlew :app:dependencies

command:

$./gradlew :app:dependencies

> Task :app:dependencies

Project ':app

implementation - Implementation only dependencies for source set 'main'. (n)
\--- com.google.android.material:material:1.1.0-alpha@5 (n)

testImplementation - Implementation only dependencies for source set 'test'. (n)
\--- org.mockito:mockito-core:2.16.0 (n)

Consult the Dependency Management chapter to learn more.

Next Step: Learn about Tasks >>

Task Basics

A task represents some independent unit of work that a build performs, such as compiling classes,
creating a JAR, generating Javadoc, or publishing archives to a repository.

Project Gradle
e———————n e m—————
|

|

TestA
TestB
Test C

build.gradle

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

source code Build Flow

Plugins

You run a Gradle build task using the gradle command or by invoking the Gradle Wrapper
(./gradlew or gradlew.bat) in your project directory:

$./gradlew build |

Available tasks
All available tasks in your project come from Gradle plugins and build scripts.

You can list all the available tasks in the project by running the following command in the terminal:

$./gradlew tasks

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.

Documentation tasks

Other tasks

compileJava - Compiles main Java source.

Running tasks

The run task is executed with ./gradlew run:

$./gradlew run

> Task :app:compilelava
> Task :app:processResources NO-SOURCE
> Task :app:classes

> Task :app:run
Hello World!

BUILD SUCCESSFUL in 904ms
2 actionable tasks: 2 executed

In this example Java project, the output of the run task is a Hello World statement printed on the
console.

Task dependency

Many times, a task requires another task to run first.

For example, for Gradle to execute the build task, the Java code must first be compiled. Thus, the
build task depends on the compileJava task.

This means that the compileJava task will run before the build task:

$./gradlew build

Task :app:compilelava

Task :app:processResources NO-SOURCE
Task :app:classes

Task :app:jar

Task :app:startScripts

Task :app:distTar

Task :app:distZip

Task :app:assemble

Task :app:compileTestl]ava

Task :app:processTestResources NO-SOURCE

V V V V V V V V V V

> Task :app:testClasses
> Task :app:test

> Task :app:check

> Task :app:build

BUILD SUCCESSFUL in 764ms
7 actionable tasks: 7 executed

Build scripts can optionally define task dependencies. Gradle then automatically determines the
task execution order.

Consult the Task development chapter to learn more.

Next Step: Learn about Plugins >>

Plugin Basics

Gradle is built on a plugin system. Gradle itself is primarily composed of infrastructure, such as a
sophisticated dependency resolution engine. The rest of its functionality comes from plugins.

A plugin is a piece of software that provides additional functionality to the Gradle build system.

Project
m———————
|

|

TestA
TestB
TestC

% build.gradle s«

: Project. JAR
source code Build Flow ject_App

Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

% build.gradle = s

a source code

Plugins Dependencies

Plugins can be applied to a Gradle build script to add new tasks, configurations, or other build-
related capabilities:

The Java Library Plugin - java-library
Used to define and build Java libraries. It compiles Java source code with the compileJava task,

generates Javadoc with the javadoc task, and packages the compiled classes into a JAR file with
the jar task.

The Google Services Gradle Plugin - com.google.gms:google-services

Enables Google APIs and Firebase services in your Android application with a configuration
block called googleServices{} and a task called generateReleaseAssets.

The Gradle Bintray Plugin - com. jfrog.bintray

Allows you to publish artifacts to Bintray by configuring the plugin using the bintray{} block.
Plugin distribution
Plugins are distributed in three ways:

1. Core plugins - Gradle develops and maintains a set of Core Plugins.
2. Community plugins - Gradle’s community shares plugins via the Gradle Plugin Portal.

3. Local plugins - Gradle enables users to create custom plugins using APIs.

Applying plugins
Applying a plugin to a project allows the plugin to extend the project’s capabilities.

You apply plugins in the build script using a plugin id (a globally unique identifier / name) and a
version:

plugins {
id «plugin id» version «plugin version»

}

1. Core plugins

Gradle Core plugins are a set of plugins that are included in the Gradle distribution itself. These
plugins provide essential functionality for building and managing projects.

Some examples of core plugins include:

* java: Provides support for building Java projects.
* groovy: Adds support for compiling and testing Groovy source files.
* ear: Adds support for building EAR files for enterprise applications.
Core plugins are unique in that they provide short names, such as java for the core JavaPlugin,

when applied in build scripts. They also do not require versions. To apply the java plugin to a
project:

build.gradle.kts

plugins {
id("java")
¥

https://plugins.gradle.org
https://docs.gradle.org/8.7/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/plugins/JavaPlugin.html

There are many Gradle Core Plugins users can take advantage of.

2. Community plugins

Community plugins are plugins developed by the Gradle community, rather than being part of the
core Gradle distribution. These plugins provide additional functionality that may be specific to
certain use cases or technologies.

The Spring Boot Gradle plugin packages executable JAR or WAR archives, and runs Spring Boot Java
applications.

To apply the org.springframework.boot plugin to a project:

build.gradle.kts

plugins {
id("org.springframework.boot") version "3.1.5"

}

Community plugins can be published at the Gradle Plugin Portal, where other Gradle users can
easily discover and use them.

3. Local plugins

Custom or local plugins are developed and used within a specific project or organization. These
plugins are not shared publicly and are tailored to the specific needs of the project or organization.

Local plugins can encapsulate common build logic, provide integrations with internal systems or
tools, or abstract complex functionality into reusable components.

Gradle provides users with the ability to develop custom plugins using APIs. To create your own
plugin, you’ll typically follow these steps:

1. Define the plugin class: create a new class that implements the Plugin<Project> interface.

// Define a 'HelloPlugin' plugin
class HelloPlugin : Plugin<Project> {
override fun apply(project: Project) {
// Define the 'hello' task
val helloTask = project.tasks.register("hello") {
dolLast {
println("Hello, Gradle!")

}

2. Build and optionally publish your plugin: generate a JAR file containing your plugin code and
optionally publish this JAR to a repository (local or remote) to be used in other projects.

https://plugins.gradle.org/plugin/org.springframework.boot
https://spring.io/
http://plugins.gradle.org/

// Publish the plugin
plugins {
‘maven-publish®

}

publishing {
publications {
create<MavenPublication>("mavenlava") {
from(components["java"])

}
}
repositories {
mavenLocal()
Iy

3. Apply your plugin: when you want to use the plugin, include the plugin ID and version in the
plugins{} block of the build file.

// Apply the plugin
plugins {
id("com.example.hello") version "1.0"

}

Consult the Plugin development chapter to learn more.

Next Step: Learn about Incremental Builds and Build Caching >>

Gradle Incremental Builds and Build Caching

Gradle uses two main features to reduce build time: incremental builds and build caching.

Project Gradle
r——=-=-=-===) r———————-
|

|

settings.gradle —h

sub-project-1

Test A
TestB
TestC

build.gradle

source code Build Flow

|

|

|

|

|
Project_App.JAR I
Android_App.APK |
Gradle_Plugin.ZIP |
Web_App.WAR |
|

|

|

|

build.gradle

source code

Plugins

Incremental builds

An incremental build is a build that avoids running tasks whose inputs have not changed since the
previous build. Re-executing such tasks is unnecessary if they would only re-produce the same
output.

For incremental builds to work, tasks must define their inputs and outputs. Gradle will determine
whether the input or outputs have changed at build time. If they have changed, Gradle will execute
the task. Otherwise, it will skip execution.

Incremental builds are always enabled, and the best way to see them in action is to turn on verbose
mode. With verbose mode, each task state is labeled during a build:

$./gradlew compileJava --console=verbose

Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
Task :buildSrc:compilePluginsBlocks UP-TO-DATE

Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE

Task :buildSrc:compileKotlin UP-TO-DATE

Task :buildSrc:compileJava NO-SOURCE

Task :buildSrc:compileGroovy NO-SOURCE

Task :buildSrc:pluginDescriptors UP-TO-DATE

Task :buildSrc:processResources UP-TO-DATE

Task :buildSrc:classes UP-TO-DATE

Task :buildSrc:jar UP-TO-DATE

Task :list:compileJava UP-TO-DATE

Task :utilities:compilelava UP-TO-DATE

Task :app:compilelava UP-TO-DATE

V V V V V V V V V V V V V V V

BUILD SUCCESSFUL in 374ms
12 actionable tasks: 12 up-to-date

When you run a task that has been previously executed and hasn’t changed, then UP-TO-DATE is
printed next to the task.

To permanently enable verbose mode, add org.gradle.console=verbose to your

TIP
gradle.properties file.

Build caching

Incremental Builds are a great optimization that helps avoid work already done. If a developer
continuously changes a single file, there is likely no need to rebuild all the other files in the project.

However, what happens when the same developer switches to a new branch created last week? The
files are rebuilt, even though the developer is building something that has been built before.

This is where a build cache is helpful.

The build cache stores previous build results and restores them when needed. It prevents the
redundant work and cost of executing time-consuming and expensive processes.

When the build cache has been used to repopulate the local directory, the tasks are marked as FROM-
CACHE:

$./gradlew compilelava --build-cache

Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
Task :buildSrc:compilePluginsBlocks UP-TO-DATE

Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE

Task :buildSrc:compileKotlin UP-TO-DATE

Task :buildSrc:compileJava NO-SOURCE

Task :buildSrc:compileGroovy NO-SOURCE

Task :buildSrc:pluginDescriptors UP-TO-DATE

Task :buildSrc:processResources UP-TO-DATE

Task :buildSrc:classes UP-TO-DATE

Task :buildSrc:jar UP-TO-DATE

Task :list:compileJava FROM-CACHE

Task :utilities:compileJava FROM-CACHE

Task :app:compileJava FROM-CACHE

V V V V V V V V V V V V V V V

BUILD SUCCESSFUL in 364ms
12 actionable tasks: 3 from cache, 9 up-to-date

Once the local directory has been repopulated, the next execution will mark tasks as UP-T0-DATE and
not FROM-CACHE.

The build cache allows you to share and reuse unchanged build and test outputs across teams. This
speeds up local and CI builds since cycles are not wasted re-building binaries unaffected by new
code changes.

Consult the Build cache chapter to learn more.

Next Step: Learn about Build Scans >>

Build Scans

A build scan is a representation of metadata captured as you run your build.

Project Gradle
———————— e ——————
|

|

Test A
TestB
Test C

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

</»] source code Build Flow

build.gradle

source code

Plugins Dependencies

Build Scans

Gradle captures your build metadata and sends it to the Build Scan Service. The service then
transforms the metadata into information you can analyze and share with others.

https://scans.gradle.com/

> C

[] @ Build Scan®@ for 'lab' yesterday X +

&?Gradle Enterprise

O]
i
i
&
EP3
&
i)

Console log
Failure
Deprecations
Timeline
Performance
Tests

Projects
Dependencies
Build dependencies
Plugins
Custom values
Switches

Infrastructure

Delete Build Scan

Request a trial

@& scans.gradle.com/s/ikej32xgkuhhy

@ x lab :app:compilelava Sep 19 2023 15:14:45 PDT

Started yesterday at 15:14:45 PDT, finished yesterday at 15:14:48 PDT

Gradle 8.1.1, Gradle Enterprise plugin 3.12.6
Composite build (1 included build)

Explore console log

1 task failure
The :app:compileJava task failed. View task in console log

Could not resolve all files for configuration ':app:compileClasspath’.

> Could not download support-compat-28.0.0.aar (com.android.support:support-compat:28.0.0)

3
%
»
i
[«
=]
@

> Could not get resource 'https://packages.atlassian.com/maven-external/com/android/support/support-compat/28.0.0/support-compat-28.0.0.aar".
> Could not HEAD 'https://d34y9yti11geow3.cloudfront.net/filestore/d2/d252b640ed832cf8addc35ef0adf9186dc7738a5?response-content-type=application%z

Explore failure

0 build deprecations

This build did not contain any deprecations.

14 tasks executed in 2 projects, 1 failure in 3s, with 10 avoided tasks saving 3.594s

:app:compileJava FAILED

:buildSrc:compileKotlin UP-TO-DATE
:buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
:buildSrc:compilePluginsBlocks UP-TO-DATE
:buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
:buildSrc:generateScriptPluginAdapters UP-TO-DATE

Explore timeline

2.867s
0.007s
0.003s
0.001s
0.001s
0.001s

The information that scans collect can be an invaluable resource when troubleshooting,

collaborating on, or optimizing the performance of your builds.

For example, with a build scan, it’s no longer necessary to copy and paste error messages or include
all the details about your environment each time you want to ask a question on Stack Overflow,
Slack, or the Gradle Forum. Instead, copy the link to your latest build scan.

&«

@ /% Build Scan® for 'lab' yesterday X +

C & scans.gradle.com/s/ikej32xgkuhhy/failure#1

@Gradle Enterprise

=
=

Summary

Console log

O]

Deprecations
Timeline
Performance

Tests

Projects
Dependencies
Build dependencies
Plugins

Custom values
Switches

Infrastructure

Delete Build Scan

Request a trial

@ x lab :app:compilelava Sep 19 2023 15:14:45 PDT

Failure 1of 1 The :app:compileJava task failed. View task in console log

Could not resolve all files for configuration ':app:compileClasspath’.

> Could not download support-compat-28.0.0.aar (com.android.support:support-compat:28.0.0)

3
X
¥
1]
[«
=
@

> Could not get resource 'https://packages.atlassian.com/maven-external/com/android/support/support-compat/28.0.0/support-compat-28.0.0.aar".
> Could not HEAD 'https://d34y9yt11geow3.cloudfront.net/filestore/d2/d252b640ed832cf8addc35ef0adf9186dc7738a5?response-content-type=application%z

Exception

org.gradle.api.tasks.TaskExecutionException: Execution failed for task ':app:compileJava’.

P at org.gradle.api.internal.tasks.execution.CatchExceptionTaskExecuter.execute(CatchExceptionTaskExecuter.java:38)

Caused by: org.gradle.api.internal.artifacts.ivyservice.DefaultlLenientConfiguration$ArtifactResolveException: Could not resolve all files for conf

b at org.gradle.api.internal.artifacts.configurations.DefaultConfiguration.mapFailure(DefaultConfiguration.java:1716)

Caused by: org.gradle.internal.resolve.ArtifactResolveException: Could not download support-compat-28.0.9.aar (com.android.support:support-compat:

» at org.gradle.api.internal.artifacts.ivyservice.ivyresolve.ErrorHandlingModuleComponentRepository$ErrorHandlingModuleComponentRepositoryAccess

Caused by: org.gradle.api.resources.ResourceException: Could not get resource 'https://packages.atlassian.com/maven-external/com/android/support/s

» at org.gradle.internal.resource.ResourceExceptions.failure(ResourceExceptions.java:74)

Caused by: org.gradle.internal.resource.transport.http.HttpErrorStatusCodeException: Could not HEAD 'https://d34y9ytl11geow3.cloudfront.net/filesto

P at org.gradle.internal.resource.transport.http.HttpClientHelper.processResponse(HttpClientHelper.java:234)

Enable Build Scans

To enable build scans on a gradle command, add --scan to the command line option:

./gradlew build --scan

You may be prompted to agree to the terms to use Build Scans.
Vist the Build Scans page to learn more.

Next Step: Start the Tutorial >>

https://scans.gradle.com/
part1_gradle_init.pdf#part1_gradle_init

OTHER TOPICS

Continuous Builds

Continuous Build allows you to automatically re-execute the requested tasks when file inputs
change. You can execute the build in this mode using the -t or --continuous command-line option.

For example, you can continuously run the test task and all dependent tasks by running:
$ gradle test --continuous

Gradle will behave as if you ran gradle test after a change to sources or tests that contribute to the
requested tasks. This means unrelated changes (such as changes to build scripts) will not trigger a
rebuild. To incorporate build logic changes, the continuous build must be restarted manually.

Continuous build uses file system watching to detect changes to the inputs. If file system watching
does not work on your system, then continuous build won’t work either. In particular, continuous
build does not work when using --no-daemon.

When Gradle detects a change to the inputs, it will not trigger the build immediately. Instead, it will
wait until no additional changes are detected for a certain period of time - the quiet period. You can
configure the quiet period in milliseconds by the Gradle property
org.gradle.continuous.quietperiod.

Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be
exited by pressing CTRL-D (On Microsoft Windows, it is required to also press ENTER or RETURN after
CTRL-D).

If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build
process must be terminated (e.g. using the kill command or similar).

If the build is being executed via the Tooling API, the build can be cancelled using the Tooling API’s
cancellation mechanism.
Limitations

Under some circumstances, continuous build may not detect changes to inputs.

Creating input directories

Sometimes, creating an input directory that was previously missing does not trigger a build, due to
the way file system watching works. For example, creating the src/main/java directory may not
trigger a build. Similarly, if the input is a filtered file tree and no files are matching the filter, the
creation of matching files may not trigger a build.

Inputs of untracked tasks

Changes to the inputs of untracked tasks or tasks that have no outputs may not trigger a build.

Changes to files outside of project directories

Gradle only watches for changes to files inside the project directory. Changes to files outside the
project directory will go undetected and not trigger a build.

Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs
while executing, Gradle will detect the change and trigger a new build. If every time the task
executes, the inputs are modified again, the build will be triggered again. This isn’t unique to
continuous build. A task that modifies its own inputs will never be considered up-to-date when run
"normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files
reported changed by Gradle. After identifying the file(s) that are changed during each build, you
should look for a task that has that file as an input. In some cases, it may be obvious (e.g., a Java file
is compiled with compileJava). In other cases, you can use --info logging to find the task that is out-
of-date due to the identified files.

AUTHORING GRADLE BUILDS

THE BASICS

Gradle Directories

Gradle uses two main directories to perform and manage its work: the Gradle User Home directory
and the Project Root directory.

Project <Project_Root_Directory> Gradle $GRADLE _USER_HOME

[EpE—
jdks

jdk-14.0.2+12
jck-11.013

wrapper/dists

gradle-8.1.1-all
gradle-8.1.1-bin

0] jak-19.01 gradle-8.3-bin

daemon

Gradle User Home directory

By default, the Gradle User Home (~/.gradle or C:\Users\<USERNAME>\.gradle) stores global
configuration properties, initialization scripts, caches, and log files.

It can be set with the environment variable GRADLE_USER_HOME.
TIP Not to be confused with the GRADLE_HOME, the optional installation directory for Gradle.

It is roughly structured as follows:

@O ©6

0
4.8
I—49
.d
m

y-setup.gradle

—— jdks ®
| ——1
| L— jdk-14.0.2+12

—— wrapper
| L—— dists @
| —
| —— gradle-4.8-bin
| —— gradle-4.9-all
| L—— gradle-4.9-bin
L—— gradle.properties
@ Global cache directory (for everything that is not project-specific).
@ Version-specific caches (e.g., to support incremental builds).
® Shared caches (e.g., for artifacts of dependencies).
@ Registry and logs of the Gradle Daemon.
® Global initialization scripts.
® JDKs downloaded by the toolchain support.
@ Distributions downloaded by the Gradle Wrapper.

Global Gradle configuration properties.

Consult the Gradle Directories reference to learn more.

Project Root directory

The project root directory contains all source files from your project.

It also contains files and directories Gradle generates, such as .gradle and build.

While .gradle is usually checked into source control, the build directory contains the output of your
builds as well as transient files Gradle uses to support features like incremental builds.

The anatomy of a typical project root directory looks as follows:

—— .gradle @
@
@

@

| L—— wrapper @
—— gradle.properties
—— gradlew

—— gradlew.bat

—— settings.gradle.kts
—— subproject-one

| —— build.gradle.kts ©
—— subproject-two

@000

®

L—

{ | — build.gradle.kts © 1

@ Project-specific cache directory generated by Gradle.

@ Version-specific caches (e.g., to support incremental builds).

® The build directory of this project into which Gradle generates all build artifacts.
@ Contains the JAR file and configuration of the Gradle Wrapper.

® Project-specific Gradle configuration properties.

® Scripts for executing builds using the Gradle Wrapper.

@ The project’s settings file where the list of subprojects is defined.

Usually, a project is organized into one or multiple subprojects.

© Each subproject has its own Gradle build script.
Consult the Gradle Directories reference to learn more.

Next Step: Learn how to structure Multi-Project Builds >>

Multi-Project Build Basics

Gradle supports multi-project builds.

Project Gradle
r——-=-==== A r————————
|

|

"
@
=
=
@
0
@
2
Q
(=2
o
—J_

TestB
Test C

sub-project-1

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

</»] source code Build Flow

sub-project-2

| |
l l
: |
% build.gradle s | |
I |
|
|
|

a source code

buildSrc

@ build.gradle ras

Plugins Dependencies

While some small projects and monolithic applications may contain a single build file and source
tree, it is often more common for a project to have been split into smaller, interdependent modules.
The word "interdependent" is vital, as you typically want to link the many modules together
through a single build.

Gradle supports this scenario through multi-project builds. This is sometimes referred to as a multi-
module project. Gradle refers to modules as subprojects.

A multi-project build consists of one root project and one or more subprojects.

Multi-Project structure

The following represents the structure of a multi-project build that contains two subprojects:

Generic Multi-Project Build:

% settings.gradle.kts

) ()

The directory structure should look as follows:

—— .gradle

| ——1
—— gradle
| F—— 1ibs.version.toml
| L—— wrapper
—— gradlew
—— gradlew.bat
—— settings.gradle.kts @
—— sub-project-1
| L—— build.gradle.kts @
—— sub-project-2
| L—— build.gradle.kts @
L—— sub-project-3
L—— build.gradle.kts @

® The settings.gradle.kts file should include all subprojects.
@ Each subproject should have its own build.gradle.kts file.

Multi-Project standards

The Gradle community has two standards for multi-project build structures:

1. Multi-Project Builds using buildSrc - where buildSrc is a subproject-like directory at the

Gradle project root containing all the build logic.

2. Composite Builds - a build that includes other builds where build-logic is a build directory at

the Gradle project root containing reusable build logic.

Multi-project Build - using buildSrc:

Composite Build - using includeBuild:

% settings.gradle.kts

O ()
(1,

% settings.gradle.kts

3 B
B

build-logic

[% settings.gradle.kts [%

B build.gradie kts

T ,\

; Sub-project containing reusable build logic

\ Separate build containing reusable build logic
Can be built by Gradle as its own project

1. Multi-Project Builds using buildSrc

Multi-project builds allow you to organize projects with many modules, wire dependencies between
those modules, and easily share common build logic amongst them.

For example, a build that has many modules called mobile-app, web-app, api, 1ib, and documentation
could be structured as follows:

—— gradle
—— gradlew
—— settings.gradle.kts
—— buildSrc
| —— build.gradle.kts
| L—— src/main/kot1lin/shared-build-conventions.gradle.kts
—— mobile-app
| L—— build.gradle.kts
—— web-app
| L—— build.gradle.kts
—— api
| L—— build.gradle.kts
F—— 11ib
| L—— build.gradle.kts
L—— documentation

L—— build.gradle.kts

The modules will have dependencies between them such as web-app and mobile-app depending on

1ib. This means that in order for Gradle to build web-app or mobile-app, it must build 1ib first.
In this example, the root settings file will look as follows:

settings.gradle.kts

include("mobile-app", "web-app", "api", "1ib", "documentation")

NOTE The order in which the subprojects (modules) are included does not matter.

The buildSrc directory is automatically recognized by Gradle. It is a good place to define and
maintain shared configuration or imperative build logic, such as custom tasks or plugins.

buildSrc is automatically included in your build as a special subproject if a build.gradle(.kts) file is
found under buildSrc.

If the java plugin is applied to the buildSrc project, the compiled code from buildSrc/src/main/java
is put in the classpath of the root build script, making it available to any subproject (web-app, mobile-
app, Lib, etc...) in the build.

Consult how to declare dependencies between subprojects to learn more.

2. Composite Builds

Composite Builds, also referred to as included builds, are best for sharing logic between builds (not
subprojects) or isolating access to shared build logic (i.e., convention plugins).

Let’s take the previous example. The logic in buildSrc has been turned into a project that contains
plugins and can be published and worked on independently of the root project build.

The plugin is moved to its own build called build-1logic with a build script and settings file:

—— gradle

—— gradlew

—— settings.gradle.kts
—— build-logic

| —— settings.gradle.kts
| L—— conventions

| —— build.gradle.kts
| L—— src/main/kot1lin/shared-build-conventions.gradle.kts
—— mobile-app

| L—— build.gradle.kts
—— web-app

| L—— build.gradle.kts
—— api

| L—— build.gradle.kts
—— 1ib

| L—— build.gradle.kts
L—— documentation

L—— build.gradle.kts

The fact that build-logic is located in a subdirectory of the root project is irrelevant.

NOTE
The folder could be located outside the root project if desired.

The root settings file includes the entire build-logic build:

settings.gradle.kts

pluginManagement {
includeBuild("build-logic")
¥

include("mobile-app", "web-app", "api", "lib", "documentation")

Consult how to create composite builds with includeBuild to learn more.

Multi-Project path

A project path has the following pattern: it starts with an optional colon, which denotes the root
project.

The root project, :, is the only project in a path not specified by its name.

The rest of a project path is a colon-separated sequence of project names, where the next project is
a subproject of the previous project:

:sub-project-1
You can see the project paths when running gradle projects:

Root project 'project'
+--- Project ':sub-project-1'
\--- Project ':sub-project-2'

Project paths usually reflect the filesystem layout, but there are exceptions. Most notably for
composite builds.

Identifying project structure
You can use the gradle projects command to identify the project structure.

As an example, let’s use a multi-project build with the following structure:

> gradle -q projects

Root project 'multiproject’

+--- Project ':api'

+--- Project ':services'

| +--- Project ':services:shared'

| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

Multi-project builds are collections of tasks you can run. The difference is that you may want to
control which project’s tasks get executed.

The following sections will cover your two options for executing tasks in a multi-project build.

Executing tasks by name

The command gradle test will execute the test task in any subprojects relative to the current
working directory that has that task.

If you run the command from the root project directory, you will run test in api, shared,
services:shared and services:webservice.

If you run the command from the services project directory, you will only execute the task in
services:shared and services:webservice.

The basic rule behind Gradle’s behavior is to execute all tasks down the hierarchy with this
name. And complain if there is no such task found in any of the subprojects traversed.

Some task selectors, like help or dependencies, will only run the task on the project
NOTE they are invoked on and not on all the subprojects to reduce the amount of
information printed on the screen.

Executing tasks by fully qualified name

You can use a task’s fully qualified name to execute a specific task in a particular subproject. For
example: gradle :services:webservice:build will run the build task of the webservice subproject.

The fully qualified name of a task is its project path plus the task name.

This approach works for any task, so if you want to know what tasks are in a particular subproject,
use the tasks task, e.g. gradle :services:webservice:tasks.

Multi-Project building and testing
The build task is typically used to compile, test, and check a single project.

In multi-project builds, you may often want to do all of these tasks across various projects. The
buildNeeded and buildDependents tasks can help with this.

In this example, the :services:person-service project depends on both the :api and :shared
projects. The :api project also depends on the :shared project.

Assuming you are working on a single project, the :api project, you have been making changes but
have not built the entire project since performing a clean. You want to build any necessary
supporting JARs but only perform code quality and unit tests on the parts of the project you have
changed.

The build task does this:

$ gradle :api:build

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTestl]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

V V V V V V V V V V V V V V V

BUILD SUCCESSFUL in 0s

If you have just gotten the latest version of the source from your version control system, which
included changes in other projects that :api depends on, you might want to build all the projects
you depend on AND test them too.

The buildNeeded task builds AND tests all the projects from the project dependencies of the
testRuntime configuration:

$ gradle :api:buildNeeded

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTestl]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

Task :shared:assemble

Task :shared:compileTestJava
Task :shared:processTestResources
Task :shared:test(Classes

Task :shared:test

Task :shared:check

Task :shared:build

Task :shared:buildNeeded

Task :api:buildNeeded

V VvV

BUILD SUCCESSFUL in 0@s

You may want to refactor some part of the :api project used in other projects. If you make these
changes, testing only the :api project is insufficient. You must test all projects that depend on the
:api project.

The buildDependents task tests ALL the projects that have a project dependency (in the testRuntime
configuration) on the specified project:

$ gradle :api:buildDependents

Task :shared:compileJava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources

vV V V V V V

Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task

V V.V

:api
rapi
:api
rapi
rapi
:api
rapi
:api
rapi

:api

:classes

rjar

:assemble

:compileTestJava
:processTestResources

:testClasses

‘test

:check

:build
:services:person-service:compileJava
:services:person-service:processResources
:services:person-service:classes
:services:person-service:jar
:services:person-service:assemble
:services:person-service:compileTestJava
:services:person-service:processTestResources
:services:person-service:testClasses
:services:person-service:test
:services:person-service:check
:services:person-service:build
:services:person-service:buildDependents
:buildDependents

BUILD SUCCESSFUL in 0s

Finally, you can build and test everything in all projects. Any task you run in the root project folder

will cause that same-named task to be run on all the children.

You can run gradle build to build and test ALL projects.

Consult the Structuring Builds chapter to learn more.

Next Step: Learn about the Gradle Build Lifecycle >>

Build Lifecycle

As a build author, you define tasks and dependencies between tasks. Gradle guarantees that these

tasks will execute in order of their dependencies.

Your build scripts and plugins configure this dependency graph.

For example, if your project tasks include build, assemble, createDocs, your build script(s) can
ensure that they are executed in the order build — assemble — createDoc.

Task Graphs

Gradle builds the task graph before executing any task.

Across all projects in the build, tasks form a Directed Acyclic Graph (DAG).

This diagram shows two example task graphs, one abstract and the other concrete, with
dependencies between tasks represented as arrows:

Generic task graph Partial task graph for a standard Java build

€

I
I
I
|
«»

N
Depends on

‘ assemble '

T

Both plugins and build scripts contribute to the task graph via the task dependency mechanism and
annotated inputs/outputs.

Build Phases

A Gradle build has three distinct phases.

1. INITIALIZATION PHASE gmwy 2. CONFIGURATION PHASE gy 3. EXECUTION PHASE

Gradle runs these phases in order:

Phase 1. Initialization
* Detects the settings.gradle(.kts) file.

* Creates a Settings instance.

» Evaluates the settings file to determine which projects (and included builds) make up the
build.

* Creates a Project instance for every project.

http://en.wikipedia.org/wiki/Directed_acyclic_graph
https://docs.gradle.org/8.7/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.7/dsl/org.gradle.api.Project.html

Phase 2. Configuration
 Evaluates the build scripts, build.gradle(.kts), of every project participating in the build.

* Creates a task graph for requested tasks.

Phase 3. Execution

* Schedules and executes the selected tasks.
* Dependencies between tasks determine execution order.

» Execution of tasks can occur in parallel.

% settings.gradle.kts ¢ d BUiId LifecyCIe

O,

c o
S 2
g &
= include("subProject1") Project()
-*é’ Settings() ———> include("subProject2") —> Project() _/\
- includeBuild("build-logic") Project()
A~

c o @build.gradle.kts
".c:) 8 'TaskF’

<
Sa X —- build.gradle.kts ¢ J
g) /_ (0 . <
2
c .
o Task B Task C Task D % build.gradle.kts
S

depends on

o
53— @ETHE @D O - ———
=

<
& D~~~ D -~ D~~~
L

Example

The following example shows which parts of settings and build files correspond to various build

phases:

settings.gradle.kts

rootProject.name = "basic"
println("This is executed during the initialization phase.")

build.gradle.kts

println("This is executed during the configuration phase.")

tasks.register("configured") {
println("This is also executed during the configuration phase, because
:configured is used in the build.")

}

tasks.register("test") {
dolLast {
println("This is executed during the execution phase.")
}
}

tasks.register("testBoth") {
doFirst {
println("This is executed first during the execution phase.")

}
dolLast {

println("This is executed last during the execution phase.")
}

println("This is executed during the configuration phase as well, because
:testBoth is used in the build.")

}

settings.gradle

rootProject.name = 'basic’
println 'This is executed during the initialization phase.'

build.gradle
println 'This is executed during the configuration phase.'

tasks.register('configured') {
println 'This is also executed during the configuration phase, because
:configured is used in the build.'

}

tasks.register('test") {
dolast {
println 'This is executed during the execution phase.'

}
}
tasks.register('testBoth') {
doFirst {
println 'This is executed first during the execution phase.'
}

dolLast {

println 'This is executed last during the execution phase.'

}

println 'This is executed during the configuration phase as well, because
:testBoth is used in the build.'
}

The following command executes the test and testBoth tasks specified above. Because Gradle only
configures requested tasks and their dependencies, the configured task never configures:

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Phase 1. Initialization

In the initialization phase, Gradle detects the set of projects (root and subprojects) and included
builds participating in the build.

Gradle first evaluates the settings file, settings.gradle(.kts), and instantiates a Settings object.
Then, Gradle instantiates Project instances for each project.

Phase 2. Configuration

In the configuration phase, Gradle adds tasks and other properties to the projects found by the
initialization phase.

Phase 3. Execution
In the execution phase, Gradle runs tasks.

Gradle uses the task execution graphs generated by the configuration phase to determine which
tasks to execute.

Next Step: Learn how to write Settings files >>

Writing Settings Files

The settings file is the entry point of every Gradle build.

settings.gradle(.kts) Gradle API

pluginManagement {

-ﬁ org.gradle.plugin.management.PluginManagementSpec

| |
repositories { 1- I
) | -- void repositories(Action<RepositoryHandler> repositoriesAction) |
gradlePluginPortal() | |

}
) I I
| |
plugins { 4+ -@mm org.gradle.plugin.use.PluginDependenciesSpec |
) id("org.gradle. toolchains™) : -- PluginDependencySpec id(java.lang.String id) :
. ; I a= i . . . I
rootProject.name = “my-project” € — T ~wmB org.gradle.api.initialization.ProjectDescriptor |
. | -- void setName(java.lang.String name) |
dependencyResolutionManagement { (—_ | |
repositories { L.o= |
mavenCentral() I -= org.gradle.api.initialization.Settings I
, } | -- void repositories(Action<RepositoryHandler> repositoryConfiguration)]
| |
include("“sub-project”) ‘I--ﬁ org.gradle.api.initialization.Settings |
: -- default void include(java.lang.String... projectPaths) :
e e J

Early in the Gradle Build lifecycle, the initialization phase finds the settings file in your project root
directory.

When the settings file settings.gradle(.kts) is found, Gradle instantiates a Settings object.

One of the purposes of the Settings object is to allow you to declare all the projects to be included in
the build.

https://docs.gradle.org/8.7/dsl/org.gradle.api.initialization.Settings.html

Settings Scripts

The settings script is either a settings.gradle file in Groovy or a settings.gradle.kts file in Kotlin.

Before Gradle assembles the projects for a build, it creates a Settings instance and executes the
settings file against it.

[% settings.gradle(.kts)

As the settings script executes, it configures this Settings. Therefore, the settings file defines the
Settings object.

There is a one-to-one correspondence between a Settings instance and a

IMPORTANT
settings.gradle(.kts) file.

The Settings Object

The Settings object is part of the Gradle API.

* In the Groovy DSL, the Settings object documentation is found here.

* In the Kotlin DSL, the Settings object documentation is found here.
Many top-level properties and blocks in a settings script are part of the Settings API.
For example, we can set the root project name in the settings script using the Settings.rootProject
property:

settings.rootProject.name = "root"

Which is usually shortened to:

rootProject.name = "root"

Standard Settings properties

The Settings object exposes a standard set of properties in your settings script.

The following table lists a few commonly used properties:

Name Description
buildCache The build cache configuration.

plugins The container of plugins that have been applied to the settings.

https://docs.gradle.org/8.7/javadoc/org/gradle/api/initialization/Settings.html
https://docs.gradle.org/8.7/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.7/kotlin-dsl/gradle/org.gradle.api.initialization/-settings/index.html

Name Description

rootDir The root directory of the build. The root directory is the project directory of the root
project.

rootProjec The root project of the build.
t

settings Returns this settings object.

The following table lists a few commonly used methods:

Name Description
include() Adds the given projects to the build.
includeBuild() Includes a build at the specified path to the composite build.

Settings Script structure

A Settings script is a series of method calls to the Gradle API that often use { -+ }, a special
shortcut in both the Groovy and Kotlin languages. A { } block is called a lambda in Kotlin or a
closure in Groovy.

Simply put, the plugins{ } block is a method invocation in which a Kotlin lambda object or Groovy
closure object is passed as the argument. It is the short form for:

plugins(function() {
id("plugin")
3]

Blocks are mapped to Gradle API methods.

The code inside the function is executed against a this object called a receiver in Kotlin lambda and
a delegate in Groovy closure. Gradle determines the correct this object and invokes the correct
corresponding method. The this of the method invocation id("plugin") object is of type
PluginDependenciesSpec.

The settings file is composed of Gradle API calls built on top of the DSLs. Gradle executes the script
line by line, top to bottom.

Let’s take a look at an example and break it down:

settings.gradle.kts

pluginManagement { O]
repositories {
gradlePluginPortal()
google()

https://docs.gradle.org/8.7/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

}

plugins {
id("org.gradle.toolchains.fake") version "0.6.0"

}

rootProject.name = "root-project”

dependencyResolutionManagement {
repositories {
mavenCentral()
}
}

include("sub-project-a")
include("sub-project-b")
include("sub-project-c")
@ Define the location of plugins
@ Apply plugins.
® Define the root project name.
@ Define build-wide repositories.

® Add subprojects to the build.

settings.gradle

pluginManagement {
repositories {

gradlePluginPortal()
google()
}
}
plugins {
id 'org.gradle.toolchains.fake' version '0.6.0'
¥

rootProject.name = 'root-project’

dependencyResolutionManagement {
repositories {
mavenCentral()
}
}

include('sub-project-a")
include('sub-project-b")

include('sub-project-c"')

@ Define the location of plugins.
@ Apply plugins.

® Define the root project name.
@ Define build-wide repositories.

® Add subprojects to the build.

1. Define the location of plugins
The settings file can optionally define the plugins your project uses with pluginManagement, including

binary repositories such as the Gradle Plugin Portal or other Gradle builds using includeBuild:

pluginManagement {
repositories {
gradlePluginPortal()
google()

You can also include plugins and plugin dependency resolution strategies in this block.

2. Apply plugins

The settings file can optionally declare the plugins that may be applied later, which can add shared
configuration among several builds / subprojects:

Plugins applied to the settings only affect the Settings object.

plugins {
id("org.gradle.toolchains.fake") version "0.6.0"

}

This is typically used to ensure that all subprojects use the same plugin version.

3. Define the root project name

The settings file defines your project name using the rootProject.name property:

rootProject.name = "root-project"”

There is only one root project per build.

https://docs.gradle.org/8.7/javadoc/org/gradle/plugin/management/PluginManagementSpec.html
https://docs.gradle.org/8.7/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/initialization/ProjectDescriptor.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

4. Define build-wide repositories

The settings file can optionally define the locations of components your project relies on (as well as
how to resolve them) using repositories such as binary repositories like Maven Central and/or
other Gradle builds using includeBuild:

dependencyResolutionManagement {
repositories {
mavenCentral()

}

You can also include version catalogs in this section.

5. Add subprojects to the build

The settings file defines the structure of the project by adding all the subprojects using the include
statement:

include("app")
include("business-logic")
include("data-model")

Settings File Scripting

There are many more properties and methods on the Settings object that you can use to configure
your build.

It’s important to remember that while many Gradle scripts are typically written in short Groovy or
Kotlin syntax, every item in the settings script is essentially invoking a method on the Settings
object in the Gradle API:

include("app")
Is actually:
settings.include("app")

Additionally, the full power of the Groovy and Kotlin languages is available to you.

For example, instead of using include many times to add subprojects, you can iterate over the list of
directories in the project root folder and include them automatically:

rootDir.listFiles().filter { it.isDirectory && (new File(it,
"build.gradle.kts").exists()) }.forEach {

https://docs.gradle.org/8.7/javadoc/org/gradle/api/initialization/resolve/DependencyResolutionManagement.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/initialization/Settings.html

include(it.name)

TIP This type of logic should be developed in a plugin.
Next Step: Learn how to write Build scripts >>

Writing Build Scripts

The initialization phase in the Gradle Build lifecycle finds the root project and subprojects included
in your project root directory using the settings file.

build.gradle(.kts)

plugins { - -ﬁ org.gradle.plugin.use.PluginDependenciesSpec

) id(“application”) -- PluginDependencySpec id(java.lang.String id)

repositories { ——-ﬁ org.gradle.api.artifacts.dsl.RepositoryHandler
mavenCentral() -- MavenArtifactRepository mavenCentral()
}
dependencies { -1 -ﬁ org.gradle.api.artifacts.dsl.DependencyHandler
} -- @Nullable Dependency add(java.lang.String configurationName)
application { -T -ﬁ org.gradle.api.plugins.JavaApplication
) mainClass = “com.example.Main -- Property<java.lang.String> getMainClass()
tasks.named<Test>("test") { - -E org.gradle.api.tasks.TaskContainer

useJUnitPlatform()

, -- public void useJUnitPlatform()

Then, for each project included in the settings file, Gradle creates a Project instance.

Gradle then looks for a corresponding build script file, which is used in the configuration phase.

Build Scripts
Every Gradle build comprises one or more projects; a root project and subprojects.

A project typically corresponds to a software component that needs to be built, like a library or an
application. It might represent a library JAR, a web application, or a distribution ZIP assembled
from the JARs produced by other projects.

On the other hand, it might represent a thing to be done, such as deploying your application to
staging or production environments.

Gradle scripts are written in either Groovy DSL or Kotlin DSL (domain-specific language).

A build script configures a project and is associated with an object of type Project.

https://docs.gradle.org/8.7/javadocorg/gradle/api/Project.html
https://docs.gradle.org/8.7/javadocorg/gradle/api/Project.html

% build.gradle(.kts)

As the build script executes, it configures Project.

The build script is either a *.gradle file in Groovy or a *.gradle.kts file in Kotlin.

IMPORTANT Build scripts configure Project objects and their children.

The Project object

The Project object is part of the Gradle API.

* In the Groovy DSL, the Project object documentation is found here.

¢ In the Kotlin DSL, the Project object documentation is found here.
Many top-level properties and blocks in a build script are part of the Project API.

For example, the following build script uses the Project.name property to print the name of the
project:

build.gradle.kts

println(name)
println(project.name)

build.gradle

println name
println project.name

$ gradle -q check
project-api
project-api

Both println statements print out the same property.

The first uses the top-level reference to the name property of the Project object. The second
statement uses the project property available to any build script, which returns the associated
Project object.

https://docs.gradle.org/8.7/javadocorg/gradle/api/Project.html
https://docs.gradle.org/8.7/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.7/kotlin-dsl/gradle/org.gradle.api/-project/index.html
https://docs.gradle.org/8.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name

Standard project properties

The Project object exposes a standard set of properties in your build script.

The following table lists a few commonly used properties:

Name Type Description

name String The name of the project directory.

path String The fully qualified name of the project.
description String A description for the project.

dependencies DependencyHandler Returns the dependency handler of the project.

repositories RepositoryHandler Returns the repository handler of the project.

layout Projectlayout Provides access to several important locations for a project.
group Object The group of this project.
version Object The version of this project.

The following table lists a few commonly used methods:

Name Description
uri() Resolves a file path to a URI, relative to the project directory of this project.
task() Creates a Task with the given name and adds it to this project.

Build Script structure

The Build script is composed of { ‘- }, a special object in both Groovy and Kotlin. This object is
called a lambda in Kotlin or a closure in Groovy.

Simply put, the plugins{ } block is a method invocation in which a Kotlin lambda object or Groovy
closure object is passed as the argument. It is the short form for:

plugins(function() {
id("plugin")
)

Blocks are mapped to Gradle API methods.

The code inside the function is executed against a this object called a receiver in Kotlin lambda and
a delegate in Groovy closure. Gradle determines the correct this object and invokes the correct
corresponding method. The this of the method invocation id("plugin") object is of type
PluginDependenciesSpec.

The build script is essentially composed of Gradle API calls built on top of the DSLs. Gradle executes
the script line by line, top to bottom.

Let’s take a look at an example and break it down:

https://docs.gradle.org/8.7/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

build.gradle.kts

plugins {
id("org.jetbrains.kotlin.jvm") version "1.9.0"
id("application")

}

repositories {
mavenCentral()

}

dependencies {
testImplementation("org.jetbrains.kotlin:kotlin-test-junit5")
testImplementation("org.junit.jupiter:junit-jupiter-engine:5.9.3")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")
implementation("com.google.guava:quava:32.1.1-jre")

}

application {
mainClass = "com.example.Main"

}

tasks.named<Test>("test") {
useJUnitPlatform()

}

@ Apply plugins to the build.

@ Define the locations where dependencies can be found.
® Add dependencies.

@ Set properties.

® Register and configure tasks.

build.gradle

plugins {
id 'org.jetbrains.kotlin.jvm' version '1.9.0'
id 'application’

}

repositories {
mavenCentral()

}

dependencies {
testImplementation 'org.jetbrains.kotlin:kotlin-test-junit5'
testImplementation 'org.junit.jupiter:junit-jupiter-engine:5.9.3"

testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
implementation 'com.google.guava:quava:32.1.1-jre’

}

application { @
mainClass = 'com.example.Main'

}

tasks.named('test') { ®
useJUnitPlatform()

}

@ Apply plugins to the build.

@ Define the locations where dependencies can be found.
® Add dependencies.

@ Set properties.

® Register and configure tasks.

1. Apply plugins to the build

Plugins are used to extend Gradle. They are also used to modularize and reuse project
configurations.

Plugins can be applied using the PluginDependenciesSpec plugins script block.

The plugins block is preferred:

plugins {
id("org.jetbrains.kotlin.jvm") version "1.9.0"
id("application")

In the example, the application plugin, which is included with Gradle, has been applied, describing
our project as a Java application.

The Kotlin gradle plugin, version 1.9.0, has also been applied. This plugin is not included with
Gradle and, therefore, has to be described using a plugin id and a plugin version so that Gradle can
find and apply it.

2. Define the locations where dependencies can be found

A project generally has a number of dependencies it needs to do its work. Dependencies include
plugins, libraries, or components that Gradle must download for the build to succeed.

The build script lets Gradle know where to look for the binaries of the dependencies. More than one
location can be provided:

repositories {
mavenCentral()
google()

In the example, the guava library and the JetBrains Kotlin plugin (org.jetbrains.kotlin.jvm) will be
downloaded from the Maven Central Repository.

3. Add dependencies

A project generally has a number of dependencies it needs to do its work. These dependencies are
often libraries of precompiled classes that are imported in the project’s source code.

Dependencies are managed via configurations and are retrieved from repositories.

Use the DependencyHandler returned by Project.getDependencies() method to manage the
dependencies. Use the RepositoryHandler returned by Project.getRepositories() method to manage
the repositories.

dependencies {
implementation("com.google.guava:quava:32.1.1-jre")

}

In the example, the application code uses Google’s guava libraries. Guava provides utility methods
for collections, caching, primitives support, concurrency, common annotations, string processing,
I/0, and validations.

4. Set properties

A plugin can add properties and methods to a project using extensions.

The Project object has an associated ExtensionContainer object that contains all the settings and
properties for the plugins that have been applied to the project.

In the example, the application plugin added an application property, which is used to detail the

main class of our Java application:

application {
mainClass = "com.example.Main"

}

5. Register and configure tasks

Tasks perform some basic piece of work, such as compiling classes, or running unit tests, or zipping
up a WAR file.

While tasks are typically defined in plugins, you may need to register or configure tasks in build

https://repo.maven.apache.org/maven2/
https://docs.gradle.org/8.7/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/plugins/ExtensionContainer.html

scripts.
Registering a task adds the task to your project.

You can register tasks in a project using the TaskContainer.register(java.lang.String) method:

tasks.register<Zip>("zip-reports") {
from 'Reports/’
include '*'
archiveName 'Reports.zip'
destinationDir(file('/dir"))

You may have seen usage of the TaskContainer.create(java.lang.String) method which should be
avoided:

tasks.create<Zip>("zip-reports") {
from 'Reports/’
include '*'
archiveName 'Reports.zip'
destinationDir(file('/dir'))

TIP register (), which enables task configuration avoidance, is preferred over create().

You can locate a task to configure it using the TaskCollection.named(java.lang.String) method:

tasks.named<Test>("test") {
useJUnitPlatform()
}

The example below configures the Javadoc task to automatically generate HTML documentation
from Java code:

tasks.named("javadoc").configure {
exclude 'app/Internal*.java'
exclude 'app/internal/*'
exclude 'app/internal/*'

Build Scripting

A build script is made up of zero or more statements and script blocks:

https://docs.gradle.org/8.7/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/tasks/TaskContainer.html
task_configuration_avoidance.pdf#task_configuration_avoidance
https://docs.gradle.org/8.7/dsl/org.gradle.api.tasks.javadoc.Javadoc.html

println(project.layout.projectDirectory);

Statements can include method calls, property assignments, and local variable definitions:

version = '1.0.0.GA'

A script block is a method call which takes a closure/lambda as a parameter:

configurations {

}

The closure/lambda configures some delegate object as it executes:

repositories {
google()
}

A build script is also a Groovy or a Kotlin script:

build.gradle.kts

tasks.register("upper") {
dolast {
val someString = "mY_nAmE"
println("Original: $someString")
println("Upper case: ${someString.toUpperCase()}")

build.gradle

tasks.register('upper') {
dolLast {
String someString = 'mY_nAmE'
println "Original: $someString"
println "Upper case: ${someString.toUpperCase()}"

$ gradle -q upper

Original: mY_nAmE
Upper case: MY_NAME

It can contain elements allowed in a Groovy or Kotlin script, such as method definitions and class
definitions:

build.gradle.kts

tasks.register("count") {
dolast {
repeat(4) { print("$it ") }
}

build.gradle

tasks.register('count') {
dolast {
4.times { print "¢it " }
}

Flexible task registration

Using the capabilities of the Groovy or Kotlin language, you can register multiple tasks in a loop:

build.gradle.kts

repeat(4) { counter ->
tasks.register("task$counter") {
dolast {
println("I'm task number $counter")

}

build.gradle

4.times { counter ->
tasks.register("taskfcounter") {
dolast {
println "I'm task number $counter"

}

$ gradle -q task1l
I'm task number 1

Declare Variables

Build scripts can declare two variables: local variables and extra properties.

Local Variables

Declare local variables with the val keyword. Local variables are only visible in the scope where
they have been declared. They are a feature of the underlying Kotlin language.

Declare local variables with the def keyword. Local variables are only visible in the scope where
they have been declared. They are a feature of the underlying Groovy language.

build.gradle.kts
val dest = "dest"
tasks.register<Copy>("copy") {

from("source")
into(dest)

build.gradle
def dest = 'dest'
tasks.register('copy', Copy) {

from 'source'
into dest

Extra Properties

Gradle’s enhanced objects, including projects, tasks, and source sets, can hold user-defined
properties.

Add, read, and set extra properties via the owning object’s extra property. Alternatively, you can
access extra properties via Kotlin delegated properties using by extra.

Add, read, and set extra properties via the owning object’s ext property. Alternatively, you can use
an ext block to add multiple properties simultaneously.

build.gradle.kts

plugins {
id("java-library")
¥

val springVersion by extra("3.1.0.RELEASE")
val emailNotification by extra { "build@emaster.org" }

sourceSets.all { extra["purpose"] = null }

sourceSets {
main {

extra["purpose"] = "production”
}
test {
extra["purpose"] = "test"
}
create("plugin") {
extra["purpose"] = "production”

}
}

tasks.register("printProperties") {
val springVersion = springVersion
val emailNotification = emailNotification
val productionSourceSets = provider {

sourceSets.matching { it.extra["purpose"] == "production" }.map {
it.name }
}
dolast {
println(springVersion)
println(emailNotification)
productionSourceSets.get().forEach { println(it) }
}

build.gradle

plugins {
id 'java-library'
}
ext {
springVersion = "3.1.0.RELEASE"
emailNotification = "build@emaster.org"
}

sourceSets.all { ext.purpose = null }

sourceSets {

main {

purpose = "production”
}
test {

purpose = "test"
}
plugin {

purpose = "production”
}

}

tasks.register('printProperties') {
def springVersion = springVersion
def emailNotification = emailNotification
def productionSourceSets = provider {

sourceSets.matching { it.purpose == "production” }.collect { it.name
¥
}
dolLast {
println springVersion
println emailNotification
productionSourceSets.get().each { println it }
}
}

$ gradle -q printProperties
3.1.0.RELEASE
build@emaster.org

main

plugin

This example adds two extra properties to the project object via by extra. Additionally, this

example adds a property named purpose to each source set by setting extra["purpose”] to null. Once
added, you can read and set these properties via extra.

This example adds two extra properties to the project object via an ext block. Additionally, this
example adds a property named purpose to each source set by setting ext.purpose to null. Once
added, you can read and set all these properties just like predefined ones.

Gradle requires special syntax for adding a property so that it can fail fast. For example, this allows
Gradle to recognize when a script attempts to set a property that does not exist. You can access
extra properties anywhere where you can access their owning object. This gives extra properties a
wider scope than local variables. Subprojects can access extra properties on their parent projects.

For more information about extra properties, see ExtraPropertiesExtension in the API
documentation.

Configure Arbitrary Objects

The example greet() task shows an example of arbitrary object configuration:

build.gradle.kts

class UserInfo(
var name: String? = null,
var email: String? = null

tasks.register("configure") {
val user = UserInfo().apply {
name = "Isaac Newton"
email = "isaac@newton.me"

Iy
dolLast {
println(user.name)
println(user.email)
}
}
build.gradle

class UserInfo {
String name
String email

}

tasks.register('configure') {
def user = configure(new UserInfo()) {
name = "Isaac Newton"

https://docs.gradle.org/8.7/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

email = "isaac@newton.me"

}
dolLast {
println user.name
println user.email
}

$ gradle -q greet
Isaac Newton
isaac@newton.me

Closure Delegates

Each closure has a delegate object. Groovy uses this delegate to look up variable and method
references to nonlocal variables and closure parameters. Gradle uses this for configuration closures,
where the delegate object refers to the object being configured.

build.gradle

dependencies {
assert delegate == project.dependencies
testImplementation('junit:junit:4.13")
delegate.testImplementation('junit:junit:4.13")

Default imports
To make build scripts more concise, Gradle automatically adds a set of import statements to scripts.

As a result, instead of writing throw new org.gradle.api.tasks.StopExecutionException(), you can
write throw new StopExecutionException() instead.

Gradle implicitly adds the following imports to each script:

Gradle default imports

import org.gradle.*

import org.gradle.api.*

import org.gradle.api.artifacts.*

import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.ivy.*
import org.gradle.api.artifacts.maven.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

api
api
api

api.
.artifacts.type.*
.artifacts.verification.*
.attributes.*
.attributes.java.*
.attributes.plugin.*
.cache.”*

.capabilities.*
.component.*
.configuration.*
.credentials.*
.distribution.*
.distribution.plugins.*
api.
file.*

api
api
api
api
api
api
api
api
api
api
api
api

api

api.
.initialization.*

api

api.
.initialization.dsl.*
.initialization.resolve.*
.invocation.*
.java.archives.*

.jvm.*

.launcher.cli.*
.logging.*
.logging.configuration.*
.model.*

.plugins.*
.plugins.antlr.*
.plugins.catalog.*
.plugins.jvm.*
.plugins.quality.*
.plugins.scala.*
.problems.*

.provider.*

.publish.*
.publish.ivy.*
.publish.ivy.plugins.*
.publish.ivy.tasks.*
.publish.maven.*
.publish.maven.plugins.*
.publish.maven.tasks.*
.publish.plugins.*
.publish.tasks.*
.reflect.*

.reporting.*
.reporting.components.*
.reporting.dependencies.*

api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api

.artifacts.query.*
.artifacts.repositories.*
.artifacts.result.*

artifacts.transform.*

execution.*

flow.*

initialization.definition.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
.gradle.
org.
.gradle.
org.
org.
org.
org.
org.
org.
org.
org.
.gradle.
org.
.gradle.
org.
.gradle.
org.
org.
org.
org.
org.
org.
org.
org.
.gradle.
org.
.gradle.
org.
.gradle.
org.
org.
org.
org.
org.
org.
org.
org.
.gradle.
org.
.gradle.
org.
.gradle.
org.
org.
org.
org.
org.
org.
org.
org.

org

org

org

org

org

org

org

org

org

org

org

gradle.
gradle.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

gradle.
gradle.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

gradle.
gradle.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

gradle.
gradle.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

api
api
api
api.
api
api
api
api
api
api
api
api
api
api
api
api
api.
api
api
api
api
api
api
api

.reporting.dependents.*
.reporting.model.*
.reporting.plugins.*

resources.*

.services.*

.specs.*

.tasks.*
.tasks.ant.*
.tasks.application.*
.tasks.bundling.*
.tasks.compile.*
.tasks.diagnostics.*
.tasks.diagnostics.configurations.*
.tasks.incremental.*
.tasks.javadoc.*
.tasks.options.*

tasks.scala.*

.tasks.testing.*
.tasks.testing.junit.*
.tasks.testing.junitplatform.*
.tasks.testing.testng.*
.tasks.util.*

.tasks.wrapper.*
.toolchain.management.*

authentication.*
authentication.aws.*
authentication.http.*
build.event.*
buildinit.*
buildinit.plugins.*
buildinit.tasks.*
caching.*
caching.configuration.*
caching.http.*
caching.local.*
concurrent.*
external.javadoc.*

ide.
ide.
ide.
ide.
ide.
ide.
ivy.
jvm.
jvm.
jvm.
jvm.
jvm.

visualstudio.*
visualstudio.plugins.*
visualstudio.tasks.*
xcode.*
xcode.plugins.*

xcode. tasks.*
*

*

application.scripts.*
application.tasks.*
tasks.*

toolchain.*

lanquage.*
lanquage.assembler.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

language.assemb
lanquage.assemb
lanquage.base.*
lanquage.base.a
lanquage.base.c
lanquage.base.p
lanquage.base.s
lanquage.c.*
language.c.plug
language.c.task
lanquage.cpp.*
language.cpp.pl
language.cpp.ta
lanquage.java.a
language.jvm.ta
lanquage.native
language.native
language.object
lanquage.object
language.object
lanquage.object
language.object
lanquage.object
lanquage.plugin
lanquage.rc.*
language.rc.plu
lanquage.rc.tas
language.scala.
language.swift.
language.swift.
lanquage.swift.
maven.*

model.*
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.

ler.plugins.*
ler.tasks.*

rtifact.*
ompile.*
lugins.*
ources.*

ins.*
s.*

ugins.*

sks.*

rtifact.*

sks.*

platform.*
platform.tasks.*
ivec.*
ivec.plugins.*
ivec.tasks.*
ivecpp.*
ivecpp.plugins.*
ivecpp.tasks.*

SR

gins.*
ks.*
tasks.*

*
plugins.*
tasks.*

*

platform.*

plugins.*

tasks.*

test.*

test.cpp.*
test.cpp.plugins.*
test.cunit.*
test.cunit.plugins.*
test.cunit.tasks.*
test.googletest.*
test.googletest.plugins.*
test.plugins.*
test.tasks.*
test.xctest.*
test.xctest.plugins.*
test.xctest.tasks.*
toolchain.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

Using Tasks

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.work.*
gradle.

gradle

nativeplatform.toolchain.plugins.*
normalization.*

platform.*

platform.base.*
platform.base.binary.*
platform.base.component.*
platform.base.plugins.*
plugin.devel.*
plugin.devel.plugins.*
plugin.devel.tasks.*
plugin.management.*
plugin.use.*

plugins.ear.*
plugins.ear.descriptor.*
plugins.ide.*
plugins.ide.api.*
plugins.ide.eclipse.*
plugins.ide.idea.*
plugins.signing.*
plugins.signing.signatory.*
plugins.signing.signatory.pgp.*
plugins.signing.type.*
plugins.signing.type.pgp.*
process.*

swiftpm.*

swiftpm.plugins.*
swiftpm.tasks.*
testing.base.*
testing.base.plugins.*
testing.jacoco.plugins.*
testing.jacoco.tasks.*
testing.jacoco.tasks.rules.*
testkit.runner.*

util.*

ves.*

ves.git.*

workers.*

Next Step: Learn how to use Tasks >>

The work that Gradle can do on a project is defined by one or more tasks.

SubProjectB

build.gradle

— = 1. TASK NAME
A ‘ E/Z S
@ 'tasks.register('generateReport', Task) {
doLast {

file.text = ${results}
println "Generated file: ${file.path}"

}

dependsOn tasks.assemble

1 — - 3. TASK GROUP / DESCRIPTION

@ tasks.register('docFilesJar', Jar) {
group = 'documentation’ (
description = 'Generate documentation.'’
archiveVersion = null
archiveFileName = 'doc-files.jar'
from 'src/main/template’

} . —=- 5. TASK CONFIGURATION

tasks.named('jar', Jaf) {
from docFilesdar € — — — — — — — — — — — —_————

}

A task represents some independent unit of work that a build performs. This might be compiling
some classes, creating a JAR, generating Javadoc, or publishing some archives to a repository.

When a user runs ./gradlew build in the command line, Gradle will execute the build task along
with any other tasks it depends on.

List available tasks

Gradle provides several default tasks for a project, which are listed by running ./gradlew tasks:

> Task :tasks

init - Initializes a new Gradle build.
wrapper - Generates Gradle wrapper files.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project
"myTutorial’.

Tasks either come from build scripts or plugins.

Once we apply a plugin to our project, such as the application plugin, additional tasks become
available:

build.gradle.kts

plugins {
id("application")
}

$./gradlew tasks

> Task :tasks

Tasks runnable from project ':app

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

Other tasks

compileJava - Compiles main Java source.

Many of these tasks, such as assemble, build, and run, should be familiar to a developer.

Task classification
There are two classes of tasks that can be executed:

1. Actionable tasks have some action(s) attached to do work in your build: compileJava.

2. Lifecycle tasks are tasks with no actions attached: assemble, build.

Typically, a lifecycle tasks depends on many actionable tasks, and is used to execute many tasks at
once.

Task registration and action

Let’s take a look at a simple "Hello World" task in a build script:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello world!")
}

build.gradle

tasks.register('hello') {
dolLast {
println "Hello world!"

}

In the example, the build script registers a single task called hello using the TaskContainer API,
and adds an action to it.

If the tasks in the project are listed, the hello task is available to Gradle:

$./gradlew app:tasks --all

> Task :app:tasks

Tasks runnable from project ':app'

compileJava - Compiles main Java source.

compileTest]ava - Compiles test Java source.

hello

processResources - Processes main resources.

processTestResources - Processes test resources.

startScripts - Creates 0S-specific scripts to run the project as a JVM application.

You can execute the task in the build script with ./gradlew hello:

https://docs.gradle.org/8.7/javadoc/org/gradle/api/tasks/TaskContainer.html

$./gradlew hello
Hello world!

When Gradle executes the hello task, it executes the action provided. In this case, the action is
simply a block containing some code: println("Hello world!").

Task group and description

The hello task from the previous section can be detailed with a description and assigned to a
group with the following update:

build.gradle.kts
tasks.register("hello") {
group = "Custom"
description = "A lovely greeting task."
dolast {

println("Hello world!")
}

Once the task is assigned to a group, it will be listed by ./gradlew tasks:

$./gradlew tasks
> Task :tasks
Custom tasks

hello - A lovely greeting task.
To view information about a task, use the help --task <task-name>command:

$./gradlew help --task hello

> Task :help
Detailed task information for hello

Path
:app:hello

Type
Task (org.gradle.api.Task)

Options

--rerun Causes the task to be re-run even if up-to-date.

Description
A lovely greeting task.

Group
Custom

As we can see, the hello task belongs to the custom group.

Task dependencies

You can declare tasks that depend on other tasks:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello world!")
}
}

tasks.register("intro") {
dependsOn("hello")
dolast {
println("I'm Gradle")

}

build.gradle

tasks.register('hello') {
dolLast {
println 'Hello world!’
}
}

tasks.register('intro') {
dependsOn tasks.hello
dolast {
println "I'm Gradle"

}

$ gradle -q intro
Hello world!

I'm Gradle

The dependency of taskX to taskY may be declared before taskY is defined:

build.gradle.kts

tasks.register("taskX") {
dependsOn("taskY")
dolast {
println("taskX")
}

}
tasks.register("taskY") {

dolLast {
println("taskY")
}

build.gradle

tasks.register('taskX') {
dependsOn 'taskY'
dolast {
println 'taskX'

}
}
tasks.register('taskY') {
dolast {
println 'taskY'
}
}

$ gradle -q taskX
tasky
taskX

The hello task from the previous example is updated to include a dependency:

build.gradle.kts

tasks.register("hello") {
group = "Custom"

description = "A lovely greeting task."
dolast {

println("Hello world!")
}

dependsOn(tasks.assemble)

The hello task now depends on the assemble task, which means that Gradle must execute the
assemble task before it can execute the hello task:

$./gradlew :app:hello

Task :app:compilelava UP-TO-DATE
Task :app:processResources NO-SOURCE
Task :app:classes UP-TO-DATE

Task :app:jar UP-TO-DATE

Task :app:startScripts UP-TO-DATE
Task :app:distTar UP-TO-DATE

Task :app:distZip UP-TO-DATE

Task :app:assemble UP-TO-DATE

V V V V V V V V

> Task :app:hello
Hello world!

Task configuration

Once registered, tasks can be accessed via the TaskProvider API for further configuration.

For instance, you can use this to add dependencies to a task at runtime dynamically:

build.gradle.kts

repeat(4) { counter ->
tasks.register("task$counter") {
dolast {
println("I'm task number $counter")
}
}

}
tasks.named("task@") { dependsOn("task2", "task3") }

build.gradle

4.times { counter ->
tasks.register("taskfcounter") {

https://docs.gradle.org/8.7/javadoc/org/gradle/api/tasks/TaskProvider.html

dolast {
println "I'm task number $counter"
}
}

}
tasks.named('task@') { dependsOn('task2', '"task3') }

$ gradle -q tasko
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello Earth")

}
}
tasks.named("hello") {
doFirst {
println("Hello Venus")
}
}
tasks.named("hello") {
dolast {
println("Hello Mars")
}
}
tasks.named("hello") {
dolast {
println("Hello Jupiter")
}
}
build.gradle

tasks.register('hello') {
doLast {
println 'Hello Earth'

}

tasks.named('hello") {
doFirst {
println 'Hello Venus'

}
+
tasks.named('hello') {
dolast {
println 'Hello Mars'
}
+
tasks.named('hello') {
dolLast {
println 'Hello Jupiter'
}
}

$ gradle -q hello
Hello Venus

Hello Earth

Hello Mars

Hello Jupiter

The calls doFirst and doLast can be executed multiple times. They add an action to the
TIP beginning or the end of the task’s actions list. When the task executes, the actions in
the action list are executed in order.

Here is an example of the named method being used to configure a task added by a plugin:

tasks.named("dokkaHtml") {
outputDirectory.set(buildDir.resolve("dokka"))
+

Task types

Gradle tasks are a subclass of Task.
In the build script, the HelloTask class is created by extending DefaultTask:

build.gradle.kts

// Extend the DefaultTask class to create a HelloTask class
abstract class HelloTask : DefaultTask() {
@TaskAction
fun hello() {
println("hello from HelloTask")

}

https://docs.gradle.org/8.7/javadoc/org/gradle/api/Task.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/DefaultTask.html

}

// Register the hello Task with type HelloTask
tasks.register<HelloTask>("hello") {

group = "Custom tasks"

description = "A lovely greeting task."

The hello task is registered with the type HelloTask.

Executing our new hello task:

$./gradlew hello

> Task :app:hello
hello from HelloTask

Now the hello task is of type HelloTask instead of type Task.

The Gradle help task reveals the change:

$./gradlew help --task hello

> Task :help
Detailed task information for hello

Path
:app:hello

Type
HelloTask (Build_gradle$HelloTask)

Options
--rerun Causes the task to be re-run even if up-to-date.

Description
A Tovely greeting task.

Group
Custom tasks

Built-in task types

Gradle provides many built-in task types with common and popular functionality, such as copying
or deleting files.

This example task copies *.war files from the source directory to the target directory using the Copy
built-in task:

tasks.register("copyTask",Copy) {
from("source")
into("target")
include("*.war")

There are many task types developers can take advantage of, including GroovyDoc, Zip, Jar,
JacocoReport, Sign, or Delete, which are available in the link:DSI..

Next Step: Learn how to write Tasks >>

Writing Tasks
Gradle tasks are created by extending DefaultTask.

However, the generic DefaultTask provides no action for Gradle. If users want to extend the
capabilities of Gradle and their build script, they must either use a built-in task or create a custom
task:

1. Built-in task - Gradle provides built-in utility tasks such as Copy, Jar, Zip, Delete, etc...

2. Custom task - Gradle allows users to subclass DefaultTask to create their own task types.

Create a task
The simplest and quickest way to create a custom task is in a build script:
To create a task, inherit from the DefaultTask class and implement a @TaskAction handler:

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@TaskAction
fun action() {
val file = File("myfile.txt")
file.createNewFile()
file.writeText("HELLO FROM MY TASK")

The CreateFileTask implements a simple set of actions. First, a file called "myfile.txt" is created in
the main project. Then, some text is written to the file.

Register a task

A task is registered in the build script using the TaskContainer.register() method, which allows it
to be then used in the build logic.

https://docs.gradle.org/8.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/tasks/TaskAction.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/tasks/TaskContainer.html

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@TaskAction
fun action() {
val file = File("myfile.txt")
file.createNewFile()
file.writeText("HELLO FROM MY TASK")

}

tasks.register<CreateFileTask>("createFileTask")

Task group and description

Setting the group and description properties on your tasks can help users understand how to use
your task:

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@TaskAction
fun action() {
val file = File("myfile.txt")
file.createNewFile()
file.writeText("HELLO FROM MY TASK")

}

tasks.register<CreateFileTask>("createFileTask",) {
group = "custom"
description = "Create myfile.txt in the current directory"

Once a task is added to a group, it is visible when listing tasks.

Task input and outputs
For the task to do useful work, it typically needs some inputs. A task typically produces outputs.

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@Input

val fileText = "HELLO FROM MY TASK"

@Input
val fileName

"myfile.txt"

@0utputFile

val myFile: File = File(fileName)

@TaskAction

fun action() {
myFile.createNewFile()
myFile.writeText(fileText)

}

tasks.register<CreateFileTask>("createFileTask") {
group = "custom"
description = "Create myfile.txt in the current directory"

Configure a task
A task is optionally configured in a build script using the TaskCollection.named() method.
The CreateFileTask class is updated so that the text in the file is configurable:

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@get:Input
abstract val fileText: Property<String>

@Input
val fileName = "myfile.txt"

@0utputFile
val myFile: File = File(fileName)

@TaskAction

fun action() {
myFile.createNewFile()
myFile.writeText(fileText.qget())

}

tasks.register<CreateFileTask>("createFileTask") {
group = "custom"
description = "Create myfile.txt in the current directory"
fileText.convention("HELLO FROM THE CREATE FILE TASK METHOD") // Set convention
}

tasks.named<CreateFileTask>("createFileTask") {
fileText.set("HELLO FROM THE NAMED METHOD") // Override with custom message
+

In the named() method, we find the createFileTask task and set the text that will be written to the

https://docs.gradle.org/8.7/javadoc/org/gradle/api/tasks/TaskCollection.html

file.

When the task is executed:

$./gradlew createFileTask
> Configure project :app
> Task :app:createFileTask

BUILD SUCCESSFUL in 5s
2 actionable tasks: 1 executed, 1 up-to-date

A text file called myfile.txt is created in the project root folder:

myfile.txt

HELLO FROM THE NAMED METHOD

Consult the Developing Gradle Tasks chapter to learn more.

Next Step: Learn how to use Plugins >>

Using Plugins

Much of Gradle’s functionality is delivered via plugins, including core plugins distributed with
Gradle, third-party plugins, and script plugins defined within builds.

Plugins introduce new tasks (e.g., JavaCompile), domain objects (e.g., SourceSet), conventions (e.g.,
locating Java source at src/main/java), and extend core or other plugin objects.

Plugins in Gradle are essential for automating common build tasks, integrating with external tools
or services, and tailoring the build process to meet specific project needs. They also serve as the
primary mechanism for organizing build logic.

Benefits of plugins

Writing many tasks and duplicating configuration blocks in build scripts can get messy. Plugins
offer several advantages over adding logic directly to the build script:

* Promotes Reusability: Reduces the need to duplicate similar logic across projects.
* Enhances Modularity: Allows for a more modular and organized build script.

* Encapsulates Logic: Keeps imperative logic separate, enabling more declarative build scripts.

Plugin distribution

You can leverage plugins from Gradle and the Gradle community or create your own.

Plugins are available in three ways:

1. Core plugins - Gradle develops and maintains a set of Core Plugins.

2. Community plugins - Gradle plugins shared in a remote repository such as Maven or the
Gradle Plugin Portal.

3. Local plugins - Gradle enables users to create custom plugins using APIs.

Types of plugins
Plugins can be implemented as binary plugins, precompiled script plugins, or script plugins:

Binary Plugins
Binary plugins are compiled plugins typically written in Java or Kotlin DSL that are packaged as

JAR files. They are applied to a project using the plugins {} block. They offer better performance
and maintainability compared to script plugins or precompiled script plugins.

Precompiled Script Plugins

Precompiled script plugins are Groovy DSL or Kotlin DSL scripts compiled and distributed as
Java class files packaged in a library. They are applied to a project using the plugins {} block.
They provide a way to reuse complex logic across projects and allow for better organization of
build logic.

Script Plugins

Script plugins are Groovy DSL or Kotlin DSL scripts that are applied directly to a Gradle build
script using the apply from: syntax. They are applied inline within a build script to add
functionality or customize the build process. They are simple to use.

A plugin often starts as a script plugin (because they are easy to write). Then, as the code becomes
more valuable, it’s migrated to a binary plugin that can be easily tested and shared between
multiple projects or organizations.

Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to
resolve the plugin, and then it needs to apply the plugin to the target, usually a Project.

1. Resolving a plugin means finding the correct version of the JAR that contains a given plugin
and adding it to the script classpath. Once a plugin is resolved, its API can be used in a build
script. Script plugins are self-resolving in that they are resolved from the specific file path or
URL provided when applying them. Core binary plugins provided as part of the Gradle
distribution are automatically resolved.

2. Applying a plugin means executing the plugin’s Plugin.apply(T) on a project.
The plugins DSL is recommended to resolve and apply plugins in one step.

Resolving plugins

Gradle provides the core plugins (e.g., JavaPlugin, GroovyPlugin, MavenPublishPlugin, etc.) as part of

https://plugins.gradle.org
https://docs.gradle.org/8.7/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/8.7/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/Plugin.html#apply-T-

its distribution, which means they are automatically resolved.
Core plugins are applied in a build script using the plugin name:
plugins {

id «plugin name»

}

For example:

build.gradle

plugins {
id("java")
}

Non-core plugins must be resolved before they can be applied. Non-core plugins are identified by a
unique ID and a version in the build file:

plugins {
id «plugin id» version «plugin version»

}

And the location of the plugin must be specified in the settings file:

settings.gradle

pluginManagement {
repositories {

gradlePluginPortal()
}
maven {

url "https://maven.example.com/plugins’
}

There are additional considerations for resolving and applying plugins:

To Use For example:
1 Apply a core, community or The plugins block _
local plugin to a specific in the build file plugins {
project.

id("org.barfuin.gradle.taskinfo")
version "2.1.0"

}

To

2 Apply common core,
community or local plugin to
multiple subprojects.

3 Apply a core, community or
local plugin needed for the
build script itself.

4 Apply a local script plugins.

1. Applying plugins using the plugins{} block

Use

A build script in
the buildSrc
directory

The buildscript
block in the build
file

The legacy apply()

method in the
build file

For example:

plugins {

id("org.barfuin.gradle.taskinfo")
version "2.1.0"

}

repositories {
jcenter()

}

dependencies {

implementation(Libs.Kotlin.corouti
nes)

}

buildscript {
repositories {
maven {
url =
uri("https://plugins.gradle.org/m2
/")
}
}

dependencies {

classpath("org.barfuin.gradle.task
info:gradle-taskinfo:2.1.0")
}

}
plugins {

id("org.barfuin.gradle.taskinfo")
version "2.1.0"

}

apply(plugin =
"org.barfuin.gradle.taskinfo")
apply<MyPlugin>()

The plugin DSL provides a concise and convenient way to declare plugin dependencies.

The plugins block configures an instance of PluginDependenciesSpec:

plugins {

https://docs.gradle.org/8.7/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

application // by name
java // by name
id("java") // by id - recommended
id("org.jetbrains.kotlin.jvm") version "1.9.0" // by id - recommended

Core Gradle plugins are unique in that they provide short names, such as java for the core
JavaPlugin.

To apply a core plugin, the short name can be used:

build.gradle.kts

plugins {
java

}

build.gradle

plugins {
id 'java'

}

All other binary plugins must use the fully qualified form of the plugin id (e.g., com.github.foo.bar).

To apply a community plugin from Gradle plugin portal, the fully qualified plugin id, a globally
unique identifier, must be used:

build.gradle.kts

plugins {
id("com.jfrog.bintray") version "1.8.5"

}

build.gradle

plugins {
id 'com.jfrog.bintray' version '1.8.5'

}

https://docs.gradle.org/8.7/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://plugins.gradle.org

See PluginDependenciesSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

The plugins DSL provides a convenient syntax for users and the ability for Gradle to determine
which plugins are used quickly. This allows Gradle to:

» Optimize the loading and reuse of plugin classes.

* Provide editors with detailed information about the potential properties and values in the build
script.

However, the DSL requires that plugins be defined statically.

There are some key differences between the plugins {} block mechanism and the "traditional”
apply() method mechanism. There are also some constraints and possible limitations.

Constrained Syntax
The plugins {} block does not support arbitrary code.

It is constrained to be idempotent (produce the same result every time) and side effect-free (safe for
Gradle to execute at any time).

The form is:

build.gradle.kts

plugins {
id(«plugin id») @
id(«plugin id») version «plugin version» @

@ for core Gradle plugins or plugins already available to the build script

@ for binary Gradle plugins that need to be resolved

build.gradle

plugins {
id «plugin id» @
id «plugin id» version «plugin version» @

@ for core Gradle plugins or plugins already available to the build script

@ for binary Gradle plugins that need to be resolved

https://docs.gradle.org/8.7/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

Where «plugin id» and «plugin version» are a string.
Where «plugin id» and «plugin version» must be constant, literal strings.

The plugins{} block must also be a top-level statement in the build script. It cannot be nested inside
another construct (e.g., an if-statement or for-loop).

Only in build scripts and settings file

The plugins{} block can only be used in a project’s build script build.gradle(.kts) and the
settings.gradle(.kts) file. It must appear before any other block. It cannot be used in script plugins
or init scripts.

Applying plugins to all subprojects

Suppose you have a multi-project build, you probably want to apply plugins to some or all of the
subprojects in your build but not to the root project.

While the default behavior of the plugins{} block is to immediately resolve and apply the plugins,
you can use the apply false syntax to tell Gradle not to apply the plugin to the current project.
Then, use the plugins{} block without the version in subprojects' build scripts:

settings.gradle.kts

include("hello-a")
include("hello-b")
include("goodbye-c")

build.gradle.kts

plugins {
id("com.example.hello") version "1.0.0" apply false
id("com.example.goodbye") version "1.0.0" apply false

hello-a/build.gradle.kts

plugins {
id("com.example.hello")

}

hello-b/build.gradle.kts

plugins {
id("com.example.hello")

}

goodbye-c/build.gradle.kts

plugins {
id("com.example.goodbye")

}

settings.gradle

include 'hello-a'
include 'hello-b'
include 'goodbye-c'

build.gradle

plugins {
id 'com.example.hello' version '1.0.0' apply false
id 'com.example.goodbye' version '1.0.0"' apply false

hello-a/build.gradle

plugins {
id 'com.example.hello'

}

hello-b/build.gradle

plugins {
id 'com.example.hello'

}

goodbye-c/build.gradle

plugins {
id 'com.example.goodbye'

}

You can also encapsulate the versions of external plugins by composing the build logic using your
own convention plugins.

2. Applying plugins from the buildSrc directory

buildSrc is an optional directory at the Gradle project root that contains build logic (i.e., plugins)
used in building the main project. You can apply plugins that reside in a project’s buildSrc directory

as long as they have a defined ID.

The following example shows how to tie the plugin implementation class my.MyPlugin, defined in
buildSrc, to the id "my-plugin™:

buildSrc/build.gradle.kts

plugins {
‘java-gradle-plugin®
}

gradlePlugin {
plugins {
create("myPlugins") {
id = "my-plugin”
implementationClass = "my.MyPlugin"

buildSrc/build.gradle

plugins {
id 'java-gradle-plugin’
}

gradlePlugin {
plugins {
myPlugins {
id = 'my-plugin’
implementationClass = "my.MyPlugin’

The plugin can then be applied by ID:

build.gradle.kts

plugins {
id("my-plugin")
¥

build.gradle

plugins {
id 'my-plugin’
}

3. Applying plugins using the buildscript{} block

The buildscript block is used for:

1. global dependencies and repositories required for building the project (applied in the
subprojects).

2. declaring which plugins are available for use in the build script (in the build.gradle(.kts) file
itself).

So when you want to use a library in the build script itself, you must add this library on the script
classpath using buildScript:

import org.apache.commons.codec.binary.Base64

buildscript {
repositories { // this is where the plugins are located
mavenCentral()
google()
}
dependencies { // these are the plugins that can be used in subprojects or in the
build file itself
classpath group: 'commons-codec', name: 'commons-codec', version: '1.2"' //
used in the task below
classpath 'com.android.tools.build:gradle:4.1.0" // used in subproject

}

tasks.register('encode') {
dolast {
def byte[] encodedString = new Base64().encode('hello world\n'.getBytes())
println new String(encodedString)

And you can apply the globally declared dependencies in the subproject that needs it:

plugins {
id 'com.android.application’

}

Binary plugins published as external jar files can be added to a project by adding the plugin to the
build script classpath and then applying the plugin.

External jars can be added to the build script classpath using the buildscript{} block as described
in External dependencies for the build script:

build.gradle.kts

buildscript {
repositories {
gradlePluginPortal()
}

dependencies {
classpath("com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.5")

}
}

apply(plugin = "com.jfrog.bintray")

build.gradle

buildscript {
repositories {
gradlePluginPortal()
}

dependencies {
classpath 'com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.5'

}
}

apply plugin: 'com.jfrog.bintray’

4. Applying script plugins using the legacy apply() method

A script plugin is an ad-hoc plugin, typically written and applied in the same build script. It is
applied using the legacy application method:

class MyPlugin : Plugin<Project> {
override fun apply(project: Project) {
println("Plugin ${this.javaClass.simpleName} applied on ${project.name}")

}

apply<MyPlugin>()

Let’s take a rudimentary example of a plugin written in a file called other.gradle located in the
same directory as the build.gradle file:

public class Other implements Plugin<Project> {
@Override
void apply(Project project) {
// Does something

}

First, import the external file using:
apply from: 'other.gradle'
Then you can apply it:
apply plugin: Other

Script plugins are automatically resolved and can be applied from a script on the local filesystem or
remotely:

build.gradle.kts

apply(from = "other.gradle.kts")

build.gradle

apply from: 'other.gradle'

Filesystem locations are relative to the project directory, while remote script locations are specified
with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

Plugin Management

The pluginManagement{} block is used to configure repositories for plugin resolution and to define
version constraints for plugins that are applied in the build scripts.

The pluginManagement{} block can be used in a settings.gradle(.kts) file, where it must be the first

block in the file:

settings.gradle.kts

pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {
}
}

rootProject.name = "plugin-management”

settings.gradle

pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {
}
}

rootProject.name = 'plugin-management’

The block can also be used in Initialization Script:

init.gradle.kts

settingsEvaluated {
pluginManagement {
plugins {
}
resolutionStrategy {

}
repositories {

}

init.gradle

settingsEvaluated { settings ->
settings.pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {

}

Custom Plugin Repositories

By default, the plugins{} DSL resolves plugins from the public Gradle Plugin Portal.

Many build authors would also like to resolve plugins from private Maven or Ivy repositories
because they contain proprietary implementation details or to have more control over what
plugins are available to their builds.

To specify custom plugin repositories, use the repositories{} block inside pluginManagement{}:

settings.gradle.kts

pluginManagement {
repositories {

maven(url = "./maven-repo")
gradlePluginPortal()
ivy(url = "./ivy-repo")
hy
}
settings.gradle

pluginManagement {
repositories {
maven {
url './maven-repo’
}
gradlePluginPortal()
ivy {
url './ivy-repo’

}

https://plugins.gradle.org

This tells Gradle to first look in the Maven repository at ../maven-repo when resolving plugins and
then to check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you
don’t want the Gradle Plugin Portal to be searched, omit the gradlePluginPortal() line. Finally, the
Ivy repository at ../ivy-repo will be checked.

Plugin Version Management

A plugins{} block inside pluginManagement{} allows all plugin versions for the build to be defined in
a single location. Plugins can then be applied by id to any build script via the plugins{} block.

One benefit of setting plugin versions this way is that the pluginManagement.plugins{} does not have
the same constrained syntax as the build script plugins{} block. This allows plugin versions to be
taken from gradle.properties, or loaded via another mechanism.

Managing plugin versions via pluginManagement:

settings.gradle.kts

pluginManagement {
val helloPluginVersion: String by settings
plugins {
id("com.example.hello") version "${helloPluginVersion}"
}
}

build.gradle.kts
plugins {

id("com.example.hello")

}

gradle.properties

helloPluginVersion=1.0.0

settings.gradle

pluginManagement {
plugins {
id 'com.example.hello' version "${helloPluginVersion}"

}

build.gradle

plugins {
id 'com.example.hello'

}

gradle.properties

helloPluginVersion=1.0.0

The plugin version is loaded from gradle.properties and configured in the settings script, allowing
the plugin to be added to any project without specifying the version.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in plugins{} blocks, e.g., changing
the requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the resolutionStrategy{} inside the pluginManagement{} block:

settings.gradle.kts

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == "com.example") {
useModule("com.example:sample-plugins:1.0.0")
}
}
}
repositories {
maven {
url = uri("./maven-repo")
}
gradlePluginPortal()
ivy {
url = uri("./ivy-repo")

}

settings.gradle

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == 'com.example') {
useModule('com.example:sample-plugins:1.0.0")

}
}
}
repositories {
maven {
url './maven-repo’

}
gradlePluginPortal()
ivy {

url './ivy-repo’

}

This tells Gradle to use the specified plugin implementation artifact instead of its built-in default
mapping from plugin ID to Maven/Ivy coordinates.

Custom Maven and Ivy plugin repositories must contain plugin marker artifacts and the artifacts
that implement the plugin. Read Gradle Plugin Development Plugin for more information on
publishing plugins to custom repositories.

See PluginManagementSpec for complete documentation for using the pluginManagement{} block.

Plugin Marker Artifacts

Since the plugins{} DSL block only allows for declaring plugins by their globally unique plugin id
and version properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact.

To do so, Gradle will look for a Plugin Marker Artifact with the coordinates
plugin.id:plugin.id.gradle.plugin:plugin.version. This marker needs to have a dependency on the
actual plugin implementation. Publishing these markers is automated by the java-gradle-plugin.

For example, the following complete sample from the sample-plugins project shows how to publish
a com.example.hello plugin and a com.example.goodbye plugin to both an Ivy and Maven repository
using the combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish
plugin.

java_gradle_plugin.pdf#java_gradle_plugin
https://docs.gradle.org/8.7/javadoc/org/gradle/plugin/management/PluginManagementSpec.html
java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

build.gradle.kts

plugins {
‘java-gradle-plugin’
‘maven-publish®
“ivy-publish®

}

group = "com.example"
version = "1.0.0"

gradlePlugin {
plugins {
create("hello") {
id = "com.example.hello"
implementationClass = "com.example.hello.HelloPlugin"
}
create("qoodbye") {
id = "com.example.goodbye"
implementationClass = "com.example.goodbye.GoodbyePlugin"

}

publishing {
repositories {
maven {
url = uri(layout.buildDirectory.dir("maven-repo"))

}
ivy {
url = uri(layout.buildDirectory.dir("ivy-repo"))
}
}
}
build.gradle
plugins {
id 'java-gradle-plugin’
id 'maven-publish’
id 'ivy-publish'
}

group 'com.example’
version '1.0.0'

gradlePlugin {

plugins {
hello {
id = 'com.example.hello’
implementationClass = 'com.example.hello.HelloPlugin'

}
goodbye {

id = 'com.example.goodbye'

implementationClass = 'com.example.goodbye.GoodbyePlugin'
¥

}

publishing {
repositories {
maven {
url layout.buildDirectory.dir("maven-repo")

}
ivy {

url layout.buildDirectory.dir("ivy-repo")
}

Running gradle publish in the sample directory creates the following Maven repository layout (the
Ivy layout is similar):

] —

maven-repo

groupld com.example.goodbye groupld com.example.hello
artifactld com.example.goodbye.gradle.plugin artifactld com.example.hello.gradle.plugin
version 1.0.0 version 1.0.0

groupld com.example
artifactld samplee.plugin
version 1.0.0

sample-plugins-1.0.0.jar

Legacy Plugin Application

With the introduction of the plugins DSL, users should have little reason to use the legacy method
of applying plugins. It is documented here in case a build author cannot use the plugin DSL due to
restrictions in how it currently works.

build.gradle.kts

apply(plugin = "java")

build.gradle

apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name "java" to
apply the JavaPlugin.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the
plugin:

build.gradle.kts

apply<JavaPlugin>()

build.gradle

apply plugin: JavaPlugin

The JavaPlugin symbol in the above sample refers to the JavaPlugin. This class does not strictly need
to be imported as the org.gradle.api.plugins package is automatically imported in all build scripts
(see Default imports).

Furthermore, one needs to append the ::class suffix to identify a class literal in Kotlin instead of
.class in Java.

Furthermore, it is unnecessary to append .class to identify a class literal in Groovy as it is in Java.

Using a Version Catalog
When a project uses a version catalog, plugins can be referenced via aliases when applied.

Let’s take a look at a simple Version Catalog:

https://docs.gradle.org/8.7/javadoc/org/gradle/api/plugins/JavaPlugin.html
https://docs.gradle.org/8.7/javadoc/org/gradle/api/plugins/JavaPlugin.html

gradle/libs.versions.toml

[versions]
intellij-plugin = "1.6"

[plugins]
jetbrains-intellij = { id = "org.jetbrains.intellij", version.ref = "intellij-plugin"

}

Then a plugin can be applied to any build script using the alias method:

build.gradle.kts

plugins {
alias(libs.plugins.jetbrains.intellij)
}

jetbrains-intellij is available as the Gradle generated safe accessor:

TIP
jetbrains.intellij.

Next Step: Learn how to write Plugins >>

Writing Plugins

If Gradle or the Gradle community does not offer the specific capabilities your project needs,
creating your own plugin could be a solution.

Additionally, if you find yourself duplicating build logic across subprojects and need a better way to
organize it, custom plugins can help.

Custom plugin

A plugin is any class that implements the Plugin interface. The example below is the most
straightforward plugin, a "hello world" plugin:

build.gradle.kts

import org.gradle.api.Plugin
import org.gradle.api.Project

abstract class SamplePlugin : Plugin<Project> {
override fun apply(project: Project) {
project.tasks.create("SampleTask") {
println("Hello world!")
}

https://docs.gradle.org/8.7/javadoc/org/gradle/api/Plugin.html

Script plugin

Many plugins start as a script plugin coded in a build script. This offers an easy way to rapidly
prototype and experiment when building a plugin. Let’s take a look at an example:

build.gradle.kts

// Define a task

abstract class CreateFileTask : DefaultTask() { ®
@get:Input
abstract val fileText: Property<String>

@Input
val fileName = "myfile.txt"

@OutputFile
val myFile: File = File(fileName)

@TaskAction

fun action() {
myFile.createNewFile()
myFile.writeText(fileText.get())

}
}
// Define a plugin
abstract class MyPlugin : Plugin<Project> { ©)
override fun apply(project: Project) {
tasks {

register("createFileTask", CreateFileTask::class) {
group = "from my plugin"
description = "Create myfile.txt in the current directory"
fileText.set("HELLO FROM MY PLUGIN")

}

// Apply the local plugin
apply<MyPlugin>() @

@ Subclass DefaultTask().
@ Use lazy configuration in the task.
® Extend the org.gradle.api.Plugin interface.

@ Apply the script plugin.

1. Subclass DefaultTask()

First, build a task by subclassing DefaultTask().

abstract class CreateFileTask : DefaultTask() { }

This simple task adds a file to our application’s root directory.

2. Use Lazy Configuration

Gradle has a concept called lazy configuration, which allows task inputs and outputs to be
referenced before they are actually set. This is done via the Property class type.

abstract val fileText: Property<String>

One advantage of this mechanism is that you can link the output file of one task to the input file of
another, all before the filename has even been decided. The Property class also knows which task
it’s linked to, enabling Gradle to add the required task dependency automatically.

3. Extend the org.gradle.api.Plugin interface

Next, create a new class that extends the org.gradle.api.Plugin interface.

abstract class MyPlugin : Plugin<Project> {
override fun apply() {}

}

You can add tasks and other logic in the apply() method.

4. Apply the script plugin

Finally, apply the local plugin in the build script.
apply<MyPlugin>()
When MyPlugin is applied in the build script, Gradle calls the fun apply() {} method defined in the

custom MyPlugin class.

This makes the plugin available to the application.

Script plugins are NOT recommended. Script plugins offer an easy way to rapidly
NOTE prototype build logic, before migrating it to a more permanent solution such as
convention plugins or binary plugins.

Convention Plugins

Convention plugins are a way to encapsulate and reuse common build logic in Gradle. They allow
you to define a set of conventions for a project, and then apply those conventions to other projects
or modules.

https://docs.gradle.org/8.7/javadoc/org/gradle/api/provider/Property.html

The example above has been re-written as a convention plugin stored in buildSrc:

buildSrc/src/main/kotlin/MyConventionPlugin.kt

import org.gradle.api.DefaultTask
import org.gradle.api.Plugin

import org.gradle.api.Project

import org.gradle.api.provider.Property
import org.gradle.api.tasks.Input
import org.gradle.api.tasks.OutputFile
import org.gradle.api.tasks.TaskAction
import java.io.File

abstract class CreateFileTask : DefaultTask() {
@get:Input
abstract val fileText: Property<String>

@Input
val fileName = project.rootDir.toString() + "/myfile.txt"

@0utputFile
val myFile: File = File(fileName)

@TaskAction

fun action() {
myFile.createNewFile()
myFile.writeText(fileText.get())

}

class MyConventionPlugin : Plugin<Project> {
override fun apply(project: Project) {
project.tasks.register("createFileTask", CreateFileTask::class.java) {
group = "from my plugin”
description = "Create myfile.txt in the current directory"
fileText.set("HELLO FROM MY PLUGIN")

The plugin can be given an id using a gradlePlugin{} block so that it can be referenced in the root:

buildSrc/build.gradle.kts

gradlePlugin {
plugins {
create("my-convention-plugin") {
id = "com.gradle.plugin.my-convention-plugin”
implementationClass = "com.gradle.plugin.MyConventionPlugin"

The gradlePlugin{} block defines the plugins being built by the project. With the newly created id,
the plugin can be applied in other build scripts accordingly:

build.gradle.kts

plugins {
application
id("com.gradle.plugin.my-convention-plugin") // Apply the new plugin

Binary Plugins

A binary plugin is a plugin that is implemented in a compiled language and is packaged as a JAR
file. It is resolved as a dependency rather than compiled from source.

For most use cases, convention plugins must be updated infrequently. Having each developer
execute the plugin build as part of their development process is wasteful, and we can instead
distribute them as binary dependencies.

There are two ways to update the convention plugin in the example above into a binary plugin.
1. Use composite builds:

settings.gradle.kts

includeBuild("my-plugin")

2. Publish the plugin to a repository:

build.gradle.kts
plugins {

id("com.gradle.plugin.myconventionplugin") version "1.0.0"

}

Consult the Developing Plugins chapter to learn more.

STRUCTURING BUILDS

Structuring Projects with Gradle

It is important to structure your Gradle project to optimize build performance. A multi-project build
is th