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Preface & Disclaimer

This manual is not complete and has no pretention to be so due to lack of time of the contributors
— our first priority is to improve the software. It is worked on continuously, which in some cases
might mean the information is not entirely correct.

Comments on form and content are welcome, please send them to one of the mailing lists (see
WWW.Zromacs.org), or open an issue at redmine.gromacs.org. Corrections can also be made in the
GROMACS git source repository and uploaded to gerrit.gromacs.org.

We release an updated version of the manual whenever we release a new version of the software,
so in general it is a good idea to use a manual with the same major and minor release number as
your GROMACS installation.

On-line Resources

You can find more documentation and other material at our homepage www.gromacs.org. Among
other things there is an on-line reference, several GROMACS mailing lists with archives and
contributed topologies/force fields.

Citation information
When citing this document in any scientific publication please refer to it as:

M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS
development team, GROMACS User Manual version 2018.8, www.gromacs.org
(2019)

However, we prefer that you cite (some of) the GROMACS papers [1, 2, 3, 4, 5, 6, 7, 8] when
you publish your results. Any future development depends on academic research grants, since the
package is distributed as free software!

GROMACS is Free Software

The entire GROMACS package is available under the GNU Lesser General Public License (LGPL),
version 2.1. This means it’s free as in free speech, not just that you can use it without pay-
ing us money. You can redistribute GROMACS and/or modify it under the terms of the LGPL
as published by the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version. For details, check the COPYING file in the source code or consult
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.

The GROMACS source code and and selected set of binary packages are available on our home-
page, www.gromacs.org. Have fun.
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Chapter 1
Introduction

1.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimization.
These are two of the many techniques that belong to the realm of computational chemistry and
molecular modeling. Computational chemistry is just a name to indicate the use of computational
techniques in chemistry, ranging from quantum mechanics of molecules to dynamics of large
complex molecular aggregates. Molecular modeling indicates the general process of describing
complex chemical systems in terms of a realistic atomic model, with the goal being to under-
stand and predict macroscopic properties based on detailed knowledge on an atomic scale. Often,
molecular modeling is used to design new materials, for which the accurate prediction of physical
properties of realistic systems is required.

Macroscopic physical properties can be distinguished by (a) static equilibrium properties, such
as the binding constant of an inhibitor to an enzyme, the average potential energy of a system, or
the radial distribution function of a liquid, and (b) dynamic or non-equilibrium properties, such
as the viscosity of a liquid, diffusion processes in membranes, the dynamics of phase changes,
reaction kinetics, or the dynamics of defects in crystals. The choice of technique depends on the
question asked and on the feasibility of the method to yield reliable results at the present state of
the art. Ideally, the (relativistic) time-dependent Schrodinger equation describes the properties of
molecular systems with high accuracy, but anything more complex than the equilibrium state of a
few atoms cannot be handled at this ab initio level. Thus, approximations are necessary; the higher
the complexity of a system and the longer the time span of the processes of interest is, the more
severe the required approximations are. At a certain point (reached very much earlier than one
would wish), the ab initio approach must be augmented or replaced by empirical parameterization
of the model used. Where simulations based on physical principles of atomic interactions still
fail due to the complexity of the system, molecular modeling is based entirely on a similarity
analysis of known structural and chemical data. The QSAR methods (Quantitative Structure-
Activity Relations) and many homology-based protein structure predictions belong to the latter
category.

Macroscopic properties are always ensemble averages over a representative statistical ensemble
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(either equilibrium or non-equilibrium) of molecular systems. For molecular modeling, this has
two important consequences:

e The knowledge of a single structure, even if it is the structure of the global energy min-
imum, is not sufficient. It is necessary to generate a representative ensemble at a given
temperature, in order to compute macroscopic properties. But this is not enough to compute
thermodynamic equilibrium properties that are based on free energies, such as phase equi-
libria, binding constants, solubilities, relative stability of molecular conformations, etc. The
computation of free energies and thermodynamic potentials requires special extensions of
molecular simulation techniques.

e While molecular simulations, in principle, provide atomic details of the structures and mo-
tions, such details are often not relevant for the macroscopic properties of interest. This
opens the way to simplify the description of interactions and average over irrelevant details.
The science of statistical mechanics provides the theoretical framework for such simpli-
fications. There is a hierarchy of methods ranging from considering groups of atoms as
one unit, describing motion in a reduced number of collective coordinates, averaging over
solvent molecules with potentials of mean force combined with stochastic dynamics [9],
to mesoscopic dynamics describing densities rather than atoms and fluxes as response to
thermodynamic gradients rather than velocities or accelerations as response to forces [10].

For the generation of a representative equilibrium ensemble two methods are available: (a) Monte
Carlo simulations and (b) Molecular Dynamics simulations. For the generation of non-equilibrium
ensembles and for the analysis of dynamic events, only the second method is appropriate. While
Monte Carlo simulations are more simple than MD (they do not require the computation of forces),
they do not yield significantly better statistics than MD in a given amount of computer time. There-
fore, MD is the more universal technique. If a starting configuration is very far from equilibrium,
the forces may be excessively large and the MD simulation may fail. In those cases, a robust en-
ergy minimization is required. Another reason to perform an energy minimization is the removal
of all kinetic energy from the system: if several “snapshots” from dynamic simulations must be
compared, energy minimization reduces the thermal noise in the structures and potential energies
so that they can be compared better.

1.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system of [V interacting atoms:

627%‘ .
The forces are the negative derivatives of a potential function V (71,72, ...,7N):
ov
F,=—— 1.2
o (1.2)

The equations are solved simultaneously in small time steps. The system is followed for some
time, taking care that the temperature and pressure remain at the required values, and the coor-
dinates are written to an output file at regular intervals. The coordinates as a function of time
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type of wavenumber

type of bond vibration (cm™1h)
C-H, O-H, N-H | stretch 3000-3500
C=C, C=0 stretch 1700-2000
HOH bending 1600

c-C stretch 1400-1600
H>CX sciss, rock | 1000-1500
CCC bending 800-1000
O-H---0 libration 400- 700
O-H---O stretch 50- 200

Table 1.1: Typical vibrational frequencies (wavenumbers) in molecules and hydrogen-bonded lig-
uids. Compare kT /h = 200 cm~! at 300 K.

represent a trajectory of the system. After initial changes, the system will usually reach an equi-
librium state. By averaging over an equilibrium trajectory, many macroscopic properties can be
extracted from the output file.

It is useful at this point to consider the limitations of MD simulations. The user should be aware
of those limitations and always perform checks on known experimental properties to assess the
accuracy of the simulation. We list the approximations below.

The simulations are classical

Using Newton’s equation of motion automatically implies the use of classical mechanics to
describe the motion of atoms. This is all right for most atoms at normal temperatures, but
there are exceptions. Hydrogen atoms are quite light and the motion of protons is sometimes
of essential quantum mechanical character. For example, a proton may tunnel through a
potential barrier in the course of a transfer over a hydrogen bond. Such processes cannot be
properly treated by classical dynamics! Helium liquid at low temperature is another example
where classical mechanics breaks down. While helium may not deeply concern us, the high
frequency vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator differs appreciably from that of a real quantum oscillator when
the resonance frequency v approximates or exceeds kp7'/h. Now at room temperature the
wavenumber o = 1/\ = v/c at which hv = kgT is approximately 200 cm~!. Thus, all
frequencies higher than, say, 100 cm~! may misbehave in classical simulations. This means
that practically all bond and bond-angle vibrations are suspect, and even hydrogen-bonded
motions as translational or librational H-bond vibrations are beyond the classical limit (see
Table 1.1). What can we do?

Well, apart from real quantum-dynamical simulations, we can do one of two things:

(a) If we perform MD simulations using harmonic oscillators for bonds, we should make
corrections to the total internal energy U = Ej,, + Ep; and specific heat Cy (and to entropy
S and free energy A or G if those are calculated). The corrections to the energy and specific
heat of a one-dimensional oscillator with frequency v are: [11]

1
UeM — ye 4 kT (x 14T ) (1.3)
2 et — 1
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QM _ x’e”
Oy = V+k<(€x_1)2—1>, (1.4)
where x = hv/kT. The classical oscillator absorbs too much energy (k7°), while the high-
frequency quantum oscillator is in its ground state at the zero-point energy level of %hu.
(b) We can treat the bonds (and bond angles) as constraints in the equations of motion. The
rationale behind this is that a quantum oscillator in its ground state resembles a constrained
bond more closely than a classical oscillator. A good practical reason for this choice is
that the algorithm can use larger time steps when the highest frequencies are removed. In
practice the time step can be made four times as large when bonds are constrained than
when they are oscillators [12]. GROMACS has this option for the bonds and bond angles.
The flexibility of the latter is rather essential to allow for the realistic motion and coverage
of configurational space [13].

Electrons are in the ground state

In MD we use a conservative force field that is a function of the positions of atoms only.
This means that the electronic motions are not considered: the electrons are supposed to
adjust their dynamics instantly when the atomic positions change (the Born-Oppenheimer
approximation), and remain in their ground state. This is really all right, almost always. But
of course, electron transfer processes and electronically excited states can not be treated.
Neither can chemical reactions be treated properly, but there are other reasons to shy away
from reactions for the time being.

Force fields are approximate

Force fields provide the forces. They are not really a part of the simulation method and
their parameters can be modified by the user as the need arises or knowledge improves.
But the form of the forces that can be used in a particular program is subject to limitations.
The force field that is incorporated in GROMACS is described in Chapter 4. In the present
version the force field is pair-additive (apart from long-range Coulomb forces), it cannot
incorporate polarizabilities, and it does not contain fine-tuning of bonded interactions. This
urges the inclusion of some limitations in this list below. For the rest it is quite useful and
fairly reliable for biologically-relevant macromolecules in aqueous solution!

The force field is pair-additive

This means that all non-bonded forces result from the sum of non-bonded pair interactions.
Non pair-additive interactions, the most important example of which is interaction through
atomic polarizability, are represented by effective pair potentials. Only average non pair-
additive contributions are incorporated. This also means that the pair interactions are not
pure, i.e., they are not valid for isolated pairs or for situations that differ appreciably from the
test systems on which the models were parameterized. In fact, the effective pair potentials
are not that bad in practice. But the omission of polarizability also means that electrons in
atoms do not provide a dielectric constant as they should. For example, real liquid alkanes
have a dielectric constant of slightly more than 2, which reduce the long-range electrostatic
interaction between (partial) charges. Thus, the simulations will exaggerate the long-range
Coulomb terms. Luckily, the next item compensates this effect a bit.

Long-range interactions are cut off
In this version, GROMACS always uses a cut-off radius for the Lennard-Jones interactions
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and sometimes for the Coulomb interactions as well. The “minimum-image convention”
used by GROMACS requires that only one image of each particle in the periodic boundary
conditions is considered for a pair interaction, so the cut-off radius cannot exceed half the
box size. That is still pretty big for large systems, and trouble is only expected for systems
containing charged particles. But then truly bad things can happen, like accumulation of
charges at the cut-off boundary or very wrong energies! For such systems, you should
consider using one of the implemented long-range electrostatic algorithms, such as particle-
mesh Ewald [14, 15].

Boundary conditions are unnatural

Since system size is small (even 10,000 particles is small), a cluster of particles will have a
lot of unwanted boundary with its environment (vacuum). We must avoid this condition if
we wish to simulate a bulk system. As such, we use periodic boundary conditions to avoid
real phase boundaries. Since liquids are not crystals, something unnatural remains. This
item is mentioned last because it is the least of the evils. For large systems, the errors are
small, but for small systems with a lot of internal spatial correlation, the periodic boundaries
may enhance internal correlation. In that case, beware of, and test, the influence of system
size. This is especially important when using lattice sums for long-range electrostatics, since
these are known to sometimes introduce extra ordering.

1.3 Energy Minimization and Search Methods

As mentioned in sec. 1.1, in many cases energy minimization is required. GROMACS provides a
number of methods for local energy minimization, as detailed in sec. 3.10.

The potential energy function of a (macro)molecular system is a very complex landscape (or hy-
persurface) in a large number of dimensions. It has one deepest point, the global minimum and
a very large number of local minima, where all derivatives of the potential energy function with
respect to the coordinates are zero and all second derivatives are non-negative. The matrix of
second derivatives, which is called the Hessian matrix, has non-negative eigenvalues; only the
collective coordinates that correspond to translation and rotation (for an isolated molecule) have
zero eigenvalues. In between the local minima there are saddle points, where the Hessian matrix
has only one negative eigenvalue. These points are the mountain passes through which the system
can migrate from one local minimum to another.

Knowledge of all local minima, including the global one, and of all saddle points would enable
us to describe the relevant structures and conformations and their free energies, as well as the
dynamics of structural transitions. Unfortunately, the dimensionality of the configurational space
and the number of local minima is so high that it is impossible to sample the space at a sufficient
number of points to obtain a complete survey. In particular, no minimization method exists that
guarantees the determination of the global minimum in any practical amount of time. Impractical
methods exist, some much faster than others [16]. However, given a starting configuration, it
is possible to find the nearest local minimum. “Nearest” in this context does not always imply
“nearest” in a geometrical sense (i.e., the least sum of square coordinate differences), but means the
minimum that can be reached by systematically moving down the steepest local gradient. Finding
this nearest local minimum is all that GROMACS can do for you, sorry! If you want to find other
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minima and hope to discover the global minimum in the process, the best advice is to experiment
with temperature-coupled MD: run your system at a high temperature for a while and then quench
it slowly down to the required temperature; do this repeatedly! If something as a melting or glass
transition temperature exists, it is wise to stay for some time slightly below that temperature and
cool down slowly according to some clever scheme, a process called simulated annealing. Since
no physical truth is required, you can use your imagination to speed up this process. One trick
that often works is to make hydrogen atoms heavier (mass 10 or so): although that will slow
down the otherwise very rapid motions of hydrogen atoms, it will hardly influence the slower
motions in the system, while enabling you to increase the time step by a factor of 3 or 4. You can
also modify the potential energy function during the search procedure, e.g. by removing barriers
(remove dihedral angle functions or replace repulsive potentials by soft-core potentials [17]), but
always take care to restore the correct functions slowly. The best search method that allows rather
drastic structural changes is to allow excursions into four-dimensional space [18], but this requires
some extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

e Those that require only function evaluations. Examples are the simplex method and its
variants. A step is made on the basis of the results of previous evaluations. If derivative
information is available, such methods are inferior to those that use this information.

e Those that use derivative information. Since the partial derivatives of the potential energy
with respect to all coordinates are known in MD programs (these are equal to minus the
forces) this class of methods is very suitable as modification of MD programs.

e Those that use second derivative information as well. These methods are superior in their
convergence properties near the minimum: a quadratic potential function is minimized in
one step! The problem is that for IV particles a 3N x 3N matrix must be computed, stored,
and inverted. Apart from the extra programming to obtain second derivatives, for most
systems of interest this is beyond the available capacity. There are intermediate methods
that build up the Hessian matrix on the fly, but they also suffer from excessive storage
requirements. S0 GROMACS will shy away from this class of methods.

The steepest descent method, available in GROMACS, is of the second class. It simply takes a
step in the direction of the negative gradient (hence in the direction of the force), without any
consideration of the history built up in previous steps. The step size is adjusted such that the
search is fast, but the motion is always downhill. This is a simple and sturdy, but somewhat
stupid, method: its convergence can be quite slow, especially in the vicinity of the local minimum!
The faster-converging conjugate gradient method (see e.g. [19]) uses gradient information from
previous steps. In general, steepest descents will bring you close to the nearest local minimum
very quickly, while conjugate gradients brings you very close to the local minimum, but performs
worse far away from the minimum. GROMACS also supports the L-BFGS minimizer, which is
mostly comparable to conjugate gradient method, but in some cases converges faster.



Chapter 2
Definitions and Units

2.1 Notation

The following conventions for mathematical typesetting are used throughout this document:

Item ‘ Notation ‘ Example
Vector Bold italic ;
Vector Length | Italic T

We define the lowercase subscripts ¢, j, k and [ to denote particles: 7; is the position vector of
particle ¢, and using this notation:

T, =T; —T; (2.1)
rij = [Ty (2.2)

The force on particle ¢ is denoted by F'; and
F';; = force on i exerted by j 2.3)

Please note that we changed notation as of version 2.0 to r;; = r; — 7; since this is the notation
commonly used. If you encounter an error, let us know.

2.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for most
relevant molecular quantities. Let us call them MD units. The basic units in this system are nm,
ps, K, electron charge (e) and atomic mass unit (u), see Table 2.1. The values used in GROMACS
are taken from the CODATA Internationally recommended 2010 values of fundamental physical
constants (see http://nist.gov).

Consistent with these units are a set of derived units, given in Table 2.2.

The electric conversion factor f = ﬁ = 138.935 458 kJ mol~! nm e 2. It relates the mechan-
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Quantity Symbol | Unit

length r nm= 10" m

mass m u (unified atomic mass unit) = 1.660 538 921 x 10~%" kg
time t ps=10"125

charge q e = elementary charge = 1.602 176 565(x1071Y C
temperature T K

Table 2.1: Basic units used in GROMACS.

Quantity Symbol | Unit

energy E,V | kKImol™!

Force F kJ mol~! nm~!

pressure P bar

velocity v nm ps~! = 1000 m s~*

dipole moment u e nm

electric potential P kI mol~! e=! = 0.010 364 269 19 Volt

electric field E kI mol™' nm~! ¢~! = 1.036426919 x 10" Vm~!

Table 2.2: Derived units. Note that an additional conversion factor of 10?8 a.m.u (~16.6) is applied
to get bar instead of internal MD units in the energy and log files.

ical quantities to the electrical quantities as in

2 2
N (2.4)
T T

Electric potentials ® and electric fields E are intermediate quantities in the calculation of energies
and forces. They do not occur inside GROMACS. If they are used in evaluations, there is a choice
of equations and related units. We strongly recommend following the usual practice of including
the factor f in expressions that evaluate ¢ and E:

o =F3 0 Ej,,j, 2.5)
J
E(r)=f) qg-m,, (2.6)

With these definitions, g® is an energy and ¢ F is a force. The units are those given in Table 2.2:
about 10 mV for potential. Thus, the potential of an electronic charge at a distance of 1 nm equals
f = 140 units ~ 1.4 V. (exact value: 1.4399645 V)

Note that these units are mutually consistent; changing any of the units is likely to produce incon-
sistencies and is therefore strongly discouraged! In particular: if A are used instead of nm, the unit
of time changes to 0.1 ps. If kcal mol~! (= 4.184 kJ mol 1) is used instead of kJ mol~! for energy,
the unit of time becomes 0.488882 ps and the unit of temperature changes to 4.184 K. But in both
cases all electrical energies go wrong, because they will still be computed in kJ mol~!, expecting
nm as the unit of length. Although careful rescaling of charges may still yield consistency, it is
clear that such confusions must be rigidly avoided.
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Symbol | Name Value
Nav | Avogadro’s number 6.022 14129 x 10?3 mol~!
R gas constant 8.3144621 x 1073 kI mol ' K~!
kg Boltzmann’s constant | idem
h Planck’s constant 0.399031 271 kJ mol~! ps
h Dirac’s constant 0.063 507 799 3 kJ mol~! ps
c velocity of light 299 792.458 nm ps !

Table 2.3: Some Physical Constants

Quantity Symbol | Relation to SI
Length r* ro!

Mass m* mM~!

Time t* tol \/e/M
Temperature T kT e !
Energy E* Ee !

Force F* Foel
Pressure p* Pode !
Velocity v* v/MJe
Density p* No3v—1

Table 2.4: Reduced Lennard-Jones quantities

In terms of the MD units, the usual physical constants take on different values (see Table 2.3).
All quantities are per mol rather than per molecule. There is no distinction between Boltzmann’s
constant k and the gas constant R: their value is 0.008 314 462 1 kJ mol~! K~

2.3 Reduced units

When simulating Lennard-Jones (LJ) systems, it might be advantageous to use reduced units (i.e.,
setting €;; = 04 = m; = kp = 1 for one type of atoms). This is possible. When specifying
the input in reduced units, the output will also be in reduced units. The one exception is the
temperature, which is expressed in 0.008 314 462 1 reduced units. This is a consequence of using
Boltzmann’s constant in the evaluation of temperature in the code. Thus not 7', but kg7, is the
reduced temperature. A GROMACS temperature 7' = 1 means a reduced temperature of 0.008 . . .
units; if a reduced temperature of 1 is required, the GROMACS temperature should be 120.272 36.

In Table 2.4 quantities are given for LJ potentials:

=] (2)"- (2]
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2.4 Mixed or Double precision

GROMACS can be compiled in either mixed or double precision. Documentation of previous
GROMACS versions referred to “single precision”, but the implementation has made selective
use of double precision for many years. Using single precision for all variables would lead to a
significant reduction in accuracy. Although in “mixed precision” all state vectors, i.e. particle
coordinates, velocities and forces, are stored in single precision, critical variables are double pre-
cision. A typical example of the latter is the virial, which is a sum over all forces in the system,
which have varying signs. In addition, in many parts of the code we managed to avoid double pre-
cision for arithmetic, by paying attention to summation order or reorganization of mathematical
expressions. The default configuration uses mixed precision, but it is easy to turn on double preci-
sion by adding the option ~-DGMX_DOUBLE=0n to cmake. Double precision will be 20 to 100%
slower than mixed precision depending on the architecture you are running on. Double precision
will use somewhat more memory and run input, energy and full-precision trajectory files will be
almost twice as large.

The energies in mixed precision are accurate up to the last decimal, the last one or two decimals
of the forces are non-significant. The virial is less accurate than the forces, since the virial is only
one order of magnitude larger than the size of each element in the sum over all atoms (sec. A.1).
In most cases this is not really a problem, since the fluctuations in the virial can be two orders
of magnitude larger than the average. Using cut-offs for the Coulomb interactions cause large
errors in the energies, forces, and virial. Even when using a reaction-field or lattice sum method,
the errors are larger than, or comparable to, the errors due to the partial use of single precision.
Since MD is chaotic, trajectories with very similar starting conditions will diverge rapidly, the
divergence is faster in mixed precision than in double precision.

For most simulations, mixed precision is accurate enough. In some cases double precision is
required to get reasonable results:

e normal mode analysis, for the conjugate gradient or 1-bfgs minimization and the calculation
and diagonalization of the Hessian

e long-term energy conservation, especially for large systems



Chapter 3
Algorithms

3.1 Introduction

In this chapter we first give describe some general concepts used in GROMACS: periodic bound-
ary conditions (sec. 3.2) and the group concept (sec. 3.3). The MD algorithm is described in
sec. 3.4: first a global form of the algorithm is given, which is refined in subsequent subsections.
The (simple) EM (Energy Minimization) algorithm is described in sec. 3.10. Some other algo-
rithms for special purpose dynamics are described after this.

A few issues are of general interest. In all cases the systemm must be defined, consisting of
molecules. Molecules again consist of particles with defined interaction functions. The detailed
description of the topology of the molecules and of the force field and the calculation of forces is
given in chapter 4. In the present chapter we describe other aspects of the algorithm, such as pair
list generation, update of velocities and positions, coupling to external temperature and pressure,
conservation of constraints. The analysis of the data generated by an MD simulation is treated in
chapter 8.

3.2 Periodic boundary conditions

The classical way to minimize edge effects in a finite system is to apply periodic boundary condi-
tions. The atoms of the system to be simulated are put into a space-filling box, which is surrounded
by translated copies of itself (Fig. 3.1). Thus there are no boundaries of the system; the artifact
caused by unwanted boundaries in an isolated cluster is now replaced by the artifact of periodic
conditions. If the system is crystalline, such boundary conditions are desired (although motions
are naturally restricted to periodic motions with wavelengths fitting into the box). If one wishes to
simulate non-periodic systems, such as liquids or solutions, the periodicity by itself causes errors.
The errors can be evaluated by comparing various system sizes; they are expected to be less severe
than the errors resulting from an unnatural boundary with vacuum.

There are several possible shapes for space-filling unit cells. Some, like the rhombic dodecahedron
and the fruncated octahedron [20] are closer to being a sphere than a cube is, and are therefore
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Figure 3.1: Periodic boundary conditions in two dimensions.

better suited to the study of an approximately spherical macromolecule in solution, since fewer
solvent molecules are required to fill the box given a minimum distance between macromolecular
images. At the same time, rhombic dodecahedra and truncated octahedra are special cases of
triclinic unit cells; the most general space-filling unit cells that comprise all possible space-filling
shapes [21]. For this reason, GROMACS is based on the triclinic unit cell.

GROMACS uses periodic boundary conditions, combined with the minimum image convention:
only one — the nearest — image of each particle is considered for short-range non-bonded in-
teraction terms. For long-range electrostatic interactions this is not always accurate enough, and
GROMACS therefore also incorporates lattice sum methods such as Ewald Sum, PME and PPPM.

GROMACS supports triclinic boxes of any shape. The simulation box (unit cell) is defined by the
3 box vectors a,b and c. The box vectors must satisfy the following conditions:

ay:az:bzzo 3.1
az; >0, by>0, c;>0 (3.2)
1 1 1
|b$| < iamv |Cm| < 561907 |Cy| < By by 3.3)

Equations 3.1 can always be satisfied by rotating the box. Inequalities (3.2) and (3.3) can always
be satisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always keeps the particles in a brick-
shaped volume for efficiency, as illustrated in Fig. 3.1 for a 2-dimensional system. Therefore,
from the output trajectory it might seem that the simulation was done in a rectangular box. The
program t r jconv can be used to convert the trajectory to a different unit-cell representation.
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Figure 3.2: A rhombic dodecahedron and truncated octahedron (arbitrary orientations).

box type image box box vectors box vector angles
distance | volume | a b c /bc Lac Zab
d 0 0
cubic d 3 0 d 0 90° 90° 90°
0 0 d
rhombic d 0 % d
dodecahedron d Vedd | 0 d 3d 60° 60° 90°
(xy-square) 0.707d% | 0 0 % V2d
rhombic d % d % d
dodecahedron d V2dd | 0 3V3d IV3d| 60° 60° 60°
(xy-hexagon) 0.707d% | 0 0 %\/6 d
truncated d % d —% d
octahedron d V3d3 | 0 2v2d 1v2d | 7T1.53° 109.47° T1.53°
07704 | 0 0  £V6d

Table 3.1: The cubic box, the rhombic dodecahedron and the truncated octahedron.

It is also possible to simulate without periodic boundary conditions, but it is usually more efficient
to simulate an isolated cluster of molecules in a large periodic box, since fast grid searching can
only be used in a periodic system.

3.2.1 Some useful box types

The three most useful box types for simulations of solvated systems are described in Table 3.1.
The rhombic dodecahedron (Fig. 3.2) is the smallest and most regular space-filling unit cell. Each
of the 12 image cells is at the same distance. The volume is 71% of the volume of a cube having
the same image distance. This saves about 29% of CPU-time when simulating a spherical or
flexible molecule in solvent. There are two different orientations of a rhombic dodecahedron that
satisfy equations 3.1, 3.2 and 3.3. The program editconf produces the orientation which has
a square intersection with the xy-plane. This orientation was chosen because the first two box
vectors coincide with the x and y-axis, which is easier to comprehend. The other orientation can
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be useful for simulations of membrane proteins. In this case the cross-section with the xy-plane is
a hexagon, which has an area which is 14% smaller than the area of a square with the same image
distance. The height of the box (c,) should be changed to obtain an optimal spacing. This box
shape not only saves CPU time, it also results in a more uniform arrangement of the proteins.

3.2.2 Cut-off restrictions

The minimum image convention implies that the cut-off radius used to truncate non-bonded inter-
actions may not exceed half the shortest box vector:

1 .
Re < 5 min([[al], [[b]], [el), (3.4)

because otherwise more than one image would be within the cut-off distance of the force. When a
macromolecule, such as a protein, is studied in solution, this restriction alone is not sufficient: in
principle, a single solvent molecule should not be able to ‘see’ both sides of the macromolecule.
This means that the length of each box vector must exceed the length of the macromolecule in the
direction of that edge plus two times the cut-off radius R.. It is, however, common to compromise
in this respect, and make the solvent layer somewhat smaller in order to reduce the computational
cost. For efficiency reasons the cut-off with triclinic boxes is more restricted. For grid search the
extra restriction is weak:

R, < min(ag, by, c.) 3.5)

For simple search the extra restriction is stronger:
L .
R. < B min(ag, by, c.) (3.6)

Each unit cell (cubic, rectangular or triclinic) is surrounded by 26 translated images. A particular
image can therefore always be identified by an index pointing to one of 27 translation vectors and
constructed by applying a translation with the indexed vector (see 3.4.3). Restriction (3.5) ensures
that only 26 images need to be considered.

3.3 The group concept

The GROMACS MD and analysis programs use user-defined groups of atoms to perform certain
actions on. The maximum number of groups is 256, but each atom can only belong to six different
groups, one each of the following:

temperature-coupling group The temperature coupling parameters (reference temperature, time
constant, number of degrees of freedom, see 3.4.4) can be defined for each T-coupling group
separately. For example, in a solvated macromolecule the solvent (that tends to generate
more heating by force and integration errors) can be coupled with a shorter time constant to
a bath than is a macromolecule, or a surface can be kept cooler than an adsorbing molecule.
Many different T-coupling groups may be defined. See also center of mass groups below.
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freeze group Atoms that belong to a freeze group are kept stationary in the dynamics. This is
useful during equilibration, e.g. to avoid badly placed solvent molecules giving unreasonable
kicks to protein atoms, although the same effect can also be obtained by putting a restraining
potential on the atoms that must be protected. The freeze option can be used, if desired, on
just one or two coordinates of an atom, thereby freezing the atoms in a plane or on a line.
When an atom is partially frozen, constraints will still be able to move it, even in a frozen
direction. A fully frozen atom can not be moved by constraints. Many freeze groups can
be defined. Frozen coordinates are unaffected by pressure scaling; in some cases this can
produce unwanted results, particularly when constraints are also used (in this case you will
get very large pressures). Accordingly, it is recommended to avoid combining freeze groups
with constraints and pressure coupling. For the sake of equilibration it could suffice to
start with freezing in a constant volume simulation, and afterward use position restraints in
conjunction with constant pressure.

accelerate group On each atom in an “accelerate group” an acceleration a? is imposed. This
is equivalent to an external force. This feature makes it possible to drive the system into
a non-equilibrium state and enables the performance of non-equilibrium MD and hence to
obtain transport properties.

energy-monitor group Mutual interactions between all energy-monitor groups are compiled dur-
ing the simulation. This is done separately for Lennard-Jones and Coulomb terms. In prin-
ciple up to 256 groups could be defined, but that would lead to 256 x256 items! Better use
this concept sparingly.
All non-bonded interactions between pairs of energy-monitor groups can be excluded (see
details in the User Guide). Pairs of particles from excluded pairs of energy-monitor groups
are not put into the pair list. This can result in a significant speedup for simulations where
interactions within or between parts of the system are not required.

center of mass group In GROMACS the center of mass (COM) motion can be removed, for
either the complete system or for groups of atoms. The latter is useful, e.g. for systems
where there is limited friction (e.g. gas systems) to prevent center of mass motion to occur.
It makes sense to use the same groups for temperature coupling and center of mass motion
removal.

Compressed position output group In order to further reduce the size of the compressed tra-
jectory file (. xtc or .tng), it is possible to store only a subset of all particles. All x-
compression groups that are specified are saved, the rest are not. If no such groups are
specified, than all atoms are saved to the compressed trajectory file.

The use of groups in GROMACS tools is described in sec. 8.1.

3.4 Molecular Dynamics

A global flow scheme for MD is given in Fig. 3.3. Each MD or EM run requires as input a set of
initial coordinates and — optionally — initial velocities of all particles involved. This chapter does
not describe how these are obtained; for the setup of an actual MD run check the online manual at
WWW.Zromacs.org.
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THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interaction V' as a function of atom positions
Positions 7 of all atoms in the system
Velocities v of all atoms in the system

4

repeat 2,3,4 for the required number of steps:

2. Compute forces

The force on any atom

ov
- 8’!‘i

is computed by calculating the force between non-bonded atom

pairs:
Fi=3;Fi
plus the forces due to bonded interactions (which may depend on 1,
2, 3, or 4 atoms), plus restraining and/or external forces.
The potential and kinetic energies and the pressure tensor may be
computed.

\’
3. Update configuration

F;=

The movement of the atoms is simulated by numerically solving
Newton’s equations of motion

& _ Fy
dtz my;
or
dT‘Z‘ dvi Fi
s =t
dt Yodt omy
g

4. if required: Output step
write positions, velocities, energies, temperature, pressure, etc.

Figure 3.3: The global MD algorithm
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Velocity

Figure 3.4: A Maxwell-Boltzmann velocity distribution, generated from random numbers.

3.4.1 Initial conditions
Topology and force field

The system topology, including a description of the force field, must be read in. Force fields and
topologies are described in chapter 4 and 5, respectively. All this information is static; it is never
modified during the run.

Coordinates and velocities

Then, before a run starts, the box size and the coordinates and velocities of all particles are re-
quired. The box size and shape is determined by three vectors (nine numbers) by, b, b3, which
represent the three basis vectors of the periodic box.

If the run starts at ¢ = ¢y, the coordinates at ¢ = ¢y must be known. The leap-frog algorithm, the
default algorithm used to update the time step with At (see 3.4.4), also requires that the velocities
att =tg — %At are known. If velocities are not available, the program can generate initial atomic
velocities v;, ¢ = 1...3N with a (Fig. 3.4) at a given absolute temperature 7":

my; 77’LZ"UZ2
p(vi) =4/ 5 kT <P (— ST > (3.7)
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where k is Boltzmann’s constant (see chapter 2). To accomplish this, normally distributed random
numbers are generated by adding twelve random numbers Ry in the range 0 < R < 1 and
subtracting 6.0 from their sum. The result is then multiplied by the standard deviation of the
velocity distribution \/k7"/m;. Since the resulting total energy will not correspond exactly to the
required temperature 7', a correction is made: first the center-of-mass motion is removed and then
all velocities are scaled so that the total energy corresponds exactly to 1" (see eqn. 3.18).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step; there is (usually) no net external
force acting on the system and the center-of-mass velocity should remain constant. In practice,
however, the update algorithm introduces a very slow change in the center-of-mass velocity, and
therefore in the total kinetic energy of the system — especially when temperature coupling is used.
If such changes are not quenched, an appreciable center-of-mass motion can develop in long runs,
and the temperature will be significantly misinterpreted. Something similar may happen due to
overall rotational motion, but only when an isolated cluster is simulated. In periodic systems with
filled boxes, the overall rotational motion is coupled to other degrees of freedom and does not
cause such problems.

3.4.2 Neighbor searching

As mentioned in chapter 4, internal forces are either generated from fixed (static) lists, or from
dynamic lists. The latter consist of non-bonded interactions between any pair of particles. When
calculating the non-bonded forces, it is convenient to have all particles in a rectangular box. As
shown in Fig. 3.1, it is possible to transform a triclinic box into a rectangular box. The output
coordinates are always in a rectangular box, even when a dodecahedron or triclinic box was used
for the simulation. Equation 3.1 ensures that we can reset particles in a rectangular box by first
shifting them with box vector c, then with b and finally with a. Equations 3.3, 3.4 and 3.5 ensure
that we can find the 14 nearest triclinic images within a linear combination that does not involve
multiples of box vectors.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairs ¢, 7 for which the distance
r;; between 7 and the nearest image of j is less than a given cut-off radius 12.. Some of the particle
pairs that fulfill this criterion are excluded, when their interaction is already fully accounted for by
bonded interactions. GROMACS employs a pair list that contains those particle pairs for which
non-bonded forces must be calculated. The pair list contains particles ¢, a displacement vector for
particle ¢, and all particles j that are within r11ist of this particular image of particle 7. The list
is updated every nst1ist steps.

To make the neighbor list, all particles that are close (i.e. within the neighbor list cut-off) to a given
particle must be found. This searching, usually called neighbor search (NS) or pair search, involves
periodic boundary conditions and determining the image (see sec. 3.2). The search algorithm is
O(N), although a simpler O(N?) algorithm is still available under some conditions.
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Cut-off schemes: group versus Verlet

From version 4.6, GROMACS supports two different cut-off scheme setups: the original one
based on particle groups and one using a Verlet buffer. There are some important differences
that affect results, performance and feature support. The group scheme can be made to work
(almost) like the Verlet scheme, but this will lead to a decrease in performance. The group scheme
is especially fast for water molecules, which are abundant in many simulations, but on the most
recent x86 processors, this advantage is negated by the better instruction-level parallelism available
in the Verlet-scheme implementation. The group scheme is deprecated in version 5.0, and will be
removed in a future version. For practical details of choosing and setting up cut-off schemes,
please see the User Guide.

In the group scheme, a neighbor list is generated consisting of pairs of groups of at least one
particle. These groups were originally charge groups (see sec. 3.4.2), but with a proper treatment
of long-range electrostatics, performance in unbuffered simulations is their only advantage. A
pair of groups is put into the neighbor list when their center of geometry is within the cut-off
distance. Interactions between all particle pairs (one from each charge group) are calculated for
a certain number of MD steps, until the neighbor list is updated. This setup is efficient, as the
neighbor search only checks distance between charge-group pair, not particle pairs (saves a factor
of 3 x 3 = 9 with a three-particle water model) and the non-bonded force kernels can be optimized
for, say, a water molecule “group”. Without explicit buffering, this setup leads to energy drift as
some particle pairs which are within the cut-off don’t interact and some outside the cut-off do
interact. This can be caused by

e particles moving across the cut-off between neighbor search steps, and/or

e for charge groups consisting of more than one particle, particle pairs moving in/out of the
cut-off when their charge group center of geometry distance is outside/inside of the cut-off.

Explicitly adding a buffer to the neighbor list will remove such artifacts, but this comes at a high
computational cost. How severe the artifacts are depends on the system, the properties in which
you are interested, and the cut-off setup.

The Verlet cut-off scheme uses a buffered pair list by default. It also uses clusters of particles, but
these are not static as in the group scheme. Rather, the clusters are defined spatially and consist
of 4 or 8 particles, which is convenient for stream computing, using e.g. SSE, AVX or CUDA on
GPUs. At neighbor search steps, a pair list is created with a Verlet buffer, ie. the pair-list cut-off
is larger than the interaction cut-off. In the non-bonded kernels, interactions are only computed
when a particle pair is within the cut-off distance at that particular time step. This ensures that
as particles move between pair search steps, forces between nearly all particles within the cut-off
distance are calculated. We say nearly all particles, because GROMACS uses a fixed pair list
update frequency for efficiency. A particle-pair, whose distance was outside the cut-off, could
possibly move enough during this fixed number of steps that its distance is now within the cut-
off. This small chance results in a small energy drift, and the size of the chance depends on the
temperature. When temperature coupling is used, the buffer size can be determined automatically,
given a certain tolerance on the energy drift.

The Verlet cut-off scheme is implemented in a very efficient fashion based on clusters of particles.
The simplest example is a cluster size of 4 particles. The pair list is then constructed based on
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cluster pairs. The cluster-pair search is much faster searching based on particle pairs, because
4 x 4 = 16 particle pairs are put in the list at once. The non-bonded force calculation kernel can
then calculate many particle-pair interactions at once, which maps nicely to SIMD or SIMT units
on modern hardware, which can perform multiple floating operations at once. These non-bonded
kernels are much faster than the kernels used in the group scheme for most types of systems,
particularly on newer hardware.

Additionally, when the list buffer is determined automatically as described below, we also apply
dynamic pair list pruning. The pair list can be constructed infrequently, but that can lead to a lot
of pairs in the list that are outside the cut-off range for all or most of the life time of this pair
list. Such pairs can be pruned out by applying a cluster-pair kernel that only determines which
clusters are in range. Because of the way the non-bonded data is regularized in GROMACS, this
kernel is an order of magnitude faster than the search and the interaction kernel. On the GPU this
pruning is overlapped with the integration on the CPU, so it is free in most cases. Therefore we
can prune every 4-10 integration steps with little overhead and significantly reduce the number of
cluster pairs in the interaction kernel. This procedure is applied automatically, unless the user set
the pair-list buffer size manually.

Energy drift and pair-list buffering

For a canonical (NVT) ensemble, the average energy error caused by diffusion of j particles from
outside the pair-list cut-off r, to inside the interaction cut-off r. over the lifetime of the list can
be determined from the atomic displacements and the shape of the potential at the cut-off. The
displacement distribution along one dimension for a freely moving particle with mass m over time
t at temperature 7' is a Gaussian G () of zero mean and variance o2 = t2kT /m. For the distance
between two particles, the variance changes to 02 = 0% = t?kgT(1/m1 + 1/ms). Note that
in practice particles usually interact with (bump into) other particles over time ¢ and therefore the
real displacement distribution is much narrower. Given a non-bonded interaction cut-off distance
of r. and a pair-list cut-off ry, = r. + 1 for r;, the Verlet buffer size, we can then write the average
energy error after time ¢ for all missing pair interactions between a single ¢ particle of type 1
surrounded by all j particles that are of type 2 with number density ps, when the inter-particle
distance changes from rq to 7, as:

(AV) = /0 b / °° 47r7“(2)P2V(rt)G(

To evaluate this analytically, we need to make some approximations. First we replace V' (r;) by
a Taylor expansion around r., then we can move the lower bound of the integral over ry to —oo
which will simplify the result:
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Replacing the factor 7 by (r, + )2, which results in a slight overestimate, allows us to calculate
the integrals analytically:

(AV) =~ Amw(re+ 0)2p2 /_7:0 /;O [V’(Tc)(rt —re) +
V”(rc)%(rt )’

Tt —To

V/”(TC)%(T,: — rc)ﬂG( .

= dx(ry+ J)ng{;V’(rc) {rwG(ij) —(r2 + 02)E<Z))] +
V) [g(rg 4 202)(;(7;*_’) (4 302)E(“)} +
1

S oysm 2 2 ™
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where G(z) is a Gaussian distribution with 0 mean and unit variance and E(z) = Jerfc(z/v/2).
We always want to achieve small energy error, so o will be small compared to both r. and ry,
thus the approximations in the equations above are good, since the Gaussian distribution decays
rapidly. The energy error needs to be averaged over all particle pair types and weighted with
the particle counts. In GROMACS we don’t allow cancellation of error between pair types, so
we average the absolute values. To obtain the average energy error per unit time, it needs to be
divided by the neighbor-list life time ¢t = (nstlist — 1) x dt. The function can not be inverted
analytically, so we use bisection to obtain the buffer size r}, for a target drift. Again we note that in
practice the error we usually be much smaller than this estimate, as in the condensed phase particle
displacements will be much smaller than for freely moving particles, which is the assumption used
here.

When (bond) constraints are present, some particles will have fewer degrees of freedom. This will
reduce the energy errors. For simplicity, we only consider one constraint per particle, the heaviest
particle in case a particle is involved in multiple constraints. This simplification overestimates the
displacement. The motion of a constrained particle is a superposition of the 3D motion of the
center of mass of both particles and a 2D rotation around the center of mass. The displacement in
an arbitrary direction of a particle with 2 degrees of freedom is not Gaussian, but rather follows
the complementary error function:

VT ( | >
W erfc 5o (3.12)

where o is again t>kgT/m. This distribution can no longer be integrated analytically to obtain
the energy error. But we can generate a tight upper bound using a scaled and shifted Gaussian
distribution (not shown). This Gaussian distribution can then be used to calculate the energy error
as described above. The rotation displacement around the center of mass can not be more than the
length of the arm. To take this into account, we scale o in eqn. 3.12 (details not presented here) to
obtain an overestimate of the real displacement. This latter effect significantly reduces the buffer

2
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Figure 3.5: Energy drift per atom for an SPC/E water system at 300K with a time step of 2 fs and
a pair-list update period of 10 steps (pair-list life time: 18 fs). PME was used with ewald-rtol
set to 10~°; this parameter affects the shape of the potential at the cut-off. Error estimates due to
finite Verlet buffer size are shown for a 1 x 1 atom pair list and 4 x 4 atom pair list without and
with (dashed line) cancellation of positive and negative errors. Real energy drift is shown for sim-
ulations using double- and mixed-precision settings. Rounding errors in the SETTLE constraint
algorithm from the use of single precision causes the drift to become negative at large buffer size.
Note that at zero buffer size, the real drift is small because positive (H-H) and negative (O-H)
energy errors cancel.

size for longer neighborlist lifetimes in e.g. water, as constrained hydrogens are by far the fastest
particles, but they can not move further than 0.1 nm from the heavy atom they are connected to.

There is one important implementation detail that reduces the energy errors caused by the finite
Verlet buffer list size. The derivation above assumes a particle pair-list. However, the GROMACS
implementation uses a cluster pair-list for efficiency. The pair list consists of pairs of clusters of
4 particles in most cases, also called a 4 x 4 list, but the list can also be 4 x 8 (GPU CUDA
kernels and AVX 256-bit single precision kernels) or 4 x 2 (SSE double-precision kernels). This
means that the pair-list is effectively much larger than the corresponding 1 x 1 list. Thus slightly
beyond the pair-list cut-off there will still be a large fraction of particle pairs present in the list.
This fraction can be determined in a simulation and accurately estimated under some reasonable
assumptions. The fraction decreases with increasing pair-list range, meaning that a smaller buffer
can be used. For typical all-atom simulations with a cut-off of 0.9 nm this fraction is around 0.9,
which gives a reduction in the energy errors of a factor of 10. This reduction is taken into account
during the automatic Verlet buffer calculation and results in a smaller buffer size.

In Fig. 3.5 one can see that for small buffer sizes the drift of the total energy is much smaller
than the pair energy error tolerance, due to cancellation of errors. For larger buffer size, the error
estimate is a factor of 6 higher than drift of the total energy, or alternatively the buffer estimate is
0.024 nm too large. This is because the protons don’t move freely over 18 fs, but rather vibrate.
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Figure 3.6: Grid search in two dimensions. The arrows are the box vectors.

Cut-off artifacts and switched interactions

With the Verlet scheme, the pair potentials are shifted to be zero at the cut-off, which makes the
potential the integral of the force. This is only possible in the group scheme if the shape of the
potential is such that its value is zero at the cut-off distance. However, there can still be energy
drift when the forces are non-zero at the cut-off. This effect is extremely small and often not
noticeable, as other integration errors (e.g. from constraints) may dominate. To completely avoid
cut-off artifacts, the non-bonded forces can be switched exactly to zero at some distance smaller
than the neighbor list cut-off (there are several ways to do this in GROMACS, see sec. 4.1.5). One
then has a buffer with the size equal to the neighbor list cut-off less the longest interaction cut-off.

Simple search

Due to eqns. 3.1 and 3.6, the vector r;; connecting images within the cut-off . can be found by
constructing:

v = T —T; (3.13)
r" = " —cxround(r/c,) (3.14)
" = 7" —bxround(r,/by) (3.15)
ri; = 1 —axround(r,/a;) (3.16)

When distances between two particles in a triclinic box are needed that do not obey eqn. 3.1, many
shifts of combinations of box vectors need to be considered to find the nearest image.

Grid search

The grid search is schematically depicted in Fig. 3.6. All particles are put on the NS grid, with the
smallest spacing > R./2 in each of the directions. In the direction of each box vector, a particle



24 Chapter 3. Algorithms

¢ has three images. For each direction the image may be -1,0 or 1, corresponding to a translation
over -1, 0 or +1 box vector. We do not search the surrounding NS grid cells for neighbors of
¢ and then calculate the image, but rather construct the images first and then search neighbors
corresponding to that image of 7. As Fig. 3.6 shows, some grid cells may be searched more than
once for different images of ¢. This is not a problem, since, due to the minimum image convention,
at most one image will “see” the j-particle. For every particle, fewer than 125 (53) neighboring
cells are searched. Therefore, the algorithm scales linearly with the number of particles. Although
the prefactor is large, the scaling behavior makes the algorithm far superior over the standard
O(N?) algorithm when there are more than a few hundred particles. The grid search is equally
fast for rectangular and triclinic boxes. Thus for most protein and peptide simulations the rhombic
dodecahedron will be the preferred box shape.

Charge groups

Charge groups were originally introduced to reduce cut-off artifacts of Coulomb interactions.
When a plain cut-off is used, significant jumps in the potential and forces arise when atoms with
(partial) charges move in and out of the cut-off radius. When all chemical moieties have a net
charge of zero, these jumps can be reduced by moving groups of atoms with net charge zero,
called charge groups, in and out of the neighbor list. This reduces the cut-off effects from the
charge-charge level to the dipole-dipole level, which decay much faster. With the advent of full
range electrostatics methods, such as particle-mesh Ewald (sec. 4.8.2), the use of charge groups
is no longer required for accuracy. It might even have a slight negative effect on the accuracy or
efficiency, depending on how the neighbor list is made and the interactions are calculated.

But there is still an important reason for using “charge groups”: efficiency with the group cut-off
scheme. Where applicable, neighbor searching is carried out on the basis of charge groups which
are defined in the molecular topology. If the nearest image distance between the geometrical
centers of the atoms of two charge groups is less than the cut-off radius, all atom pairs between
the charge groups are included in the pair list. The neighbor searching for a water system, for
instance, is 32 = 9 times faster when each molecule is treated as a charge group. Also the highly
optimized water force loops (see sec. A.2.1) only work when all atoms in a water molecule form
a single charge group. Currently the name neighbor-search group would be more appropriate, but
the name charge group is retained for historical reasons. When developing a new force field, the
advice is to use charge groups of 3 to 4 atoms for optimal performance. For all-atom force fields
this is relatively easy, as one can simply put hydrogen atoms, and in some case oxygen atoms, in
the same charge group as the heavy atom they are connected to; for example: CHs, CH2, CH,
NH,, NH, OH, COs, CO.

With the Verlet cut-off scheme, charge groups are ignored.

3.4.3 Compute forces
Potential energy

When forces are computed, the potential energy of each interaction term is computed as well. The
total potential energy is summed for various contributions, such as Lennard-Jones, Coulomb, and
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bonded terms. It is also possible to compute these contributions for energy-monitor groups of
atoms that are separately defined (see sec. 3.3).

Kinetic energy and temperature

The temperature is given by the total kinetic energy of the /N-particle system:
1N
Egin = Zmivf (3.17)
i=1
From this the absolute temperature 7' can be computed using:

1
5 NarkT = Ein (3.18)

where £ is Boltzmann’s constant and N4 is the number of degrees of freedom which can be
computed from:
Ndf = 3N — N¢ — Neom (319)

Here N, is the number of constraints imposed on the system. When performing molecular dynam-

ics Neom = 3 additional degrees of freedom must be removed, because the three center-of-mass

velocities are constants of the motion, which are usually set to zero. When simulating in vacuo,

the rotation around the center of mass can also be removed, in this case N, = 6. When more

than one temperature-coupling group is used, the number of degrees of freedom for group 7 is:
3N — N. — Neom

Ni = (3N" — NY) NN (3.20)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation in a
triclinic system, or systems where shear forces are imposed:

1 N
Biin = > miv; @ v; (3.21)
7

Pressure and virial

The pressure tensor P is calculated from the difference between kinetic energy Fjy;, and the virial

P—
o *
e o

2
v
where V' is the volume of the computational box. The scalar pressure P, which can be used for
pressure coupling in the case of isotropic systems, is computed as:

P = (E - 5) (3.22)

P = trace(P)/3 (3.23)
The virial = tensor is defined as:
— 1
E=-5 Z ri; @ Fyj (3.24)
1<)

The GROMACS implementation of the virial computation is described in sec. A.1.
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Figure 3.7: The Leap-Frog integration method. The algorithm is called Leap-Frog because = and
v are leaping like frogs over each other’s backs.

3.4.4 The leap-frog integrator

The default MD integrator in GROMACS is the so-called leap-frog algorithm [22] for the inte-
gration of the equations of motion. When extremely accurate integration with temperature and/or
pressure coupling is required, the velocity Verlet integrators are also present and may be preferable
(see 3.4.5). The leap-frog algorithm uses positions 7 at time ¢ and velocities v at time ¢t — %At; it
updates positions and velocities using the forces F'(¢) determined by the positions at time ¢ using
these relations:

wlt + %At) — u(t— %At) + %F(t) (3.25)
P4 A) = r(b) + Aot + %At) (3.26)

The algorithm is visualized in Fig. 3.7. It produces trajectories that are identical to the Verlet [23]
algorithm, whose position-update relation is

r(t+ At) = 2r(t) —r(t — At) + %F(t)Aﬂ +O(Ath) (3.27)

The algorithm is of third order in = and is time-reversible. See ref. [24] for the merits of this
algorithm and comparison with other time integration algorithms.

The equations of motion are modified for temperature coupling and pressure coupling, and ex-
tended to include the conservation of constraints, all of which are described below.

3.4.5 The velocity Verlet integrator

The velocity Verlet algorithm [25] is also implemented in GROMACS, though it is not yet fully
integrated with all sets of options. In velocity Verlet, positions 7 and velocities v at time ¢ are used
to integrate the equations of motion; velocities at the previous half step are not required.

w(t + %At) — w4+ %F(t) (3.28)
P4 A) = () + Ato(t+ %At) (3.29)

vt +A) = w(it LAY+ QA—tF(t +AD) (330)
m
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or, equivalently,

At?
r(t+At) = r(t)+Atv+ %F(t) (3.31)
v(t+At) = v(t)+ 2% [F(t) + F(t + At)] (3.32)

With no temperature or pressure coupling, and with corresponding starting points, leap-frog and
velocity Verlet will generate identical trajectories, as can easily be verified by hand from the equa-
tions above. Given a single starting file with the same starting point «(0) and v(0), leap-frog
and velocity Verlet will not give identical trajectories, as leap-frog will interpret the velocities as
corresponding to ¢ = —%At, while velocity Verlet will interpret them as corresponding to the
timepoint ¢ = 0.

3.4.6 Understanding reversible integrators: The Trotter decomposition

To further understand the relationship between velocity Verlet and leap-frog integration, we intro-
duce the reversible Trotter formulation of dynamics, which is also useful to understanding imple-
mentations of thermostats and barostats in GROMACS.

A system of coupled, first-order differential equations can be evolved from time ¢ = 0 to time ¢ by
applying the evolution operator

L(t) = exp(ilt)['(0)
iL = TI'-Vr, (3.33)

where L is the Liouville operator, and I' is the multidimensional vector of independent variables
(positions and velocities). A short-time approximation to the true operator, accurate at time At =
t/ P, is applied P times in succession to evolve the system as

I(t) = ﬁ exp(iLAL)L(0) (3.34)
=1

For NVE dynamics, the Liouville operator is
N N o4
iL=>Y vi-Vp,+Y —F(r;)- Vo, (3.35)
=1 =1
This can be split into two additive operators

N
iL1 = Z*F(Tz)v'vz

i=1 i
N
iLy = Y vi-Vp, (3.36)
i=1
Then a short-time, symmetric, and thus reversible approximation of the true dynamics will be

exp(iLAt) = exp(iLQ%At) exp(iL1At) exp(iLQ%At) +0O(A%). (3.37)
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This corresponds to velocity Verlet integration. The first exponential term over %At corresponds
to a velocity half-step, the second exponential term over At corresponds to a full velocity step,
and the last exponential term over %At is the final velocity half step. For future times ¢t = nAt,
this becomes

1 1 "
exp(iLnAt) =~ (exp(iL22At) exp(iLqAt) exp(iL22At)>
1 n—1
~ exp(ils iAt) (exp(iLlAt) exp(iLgAt))
1
exp(tL1At) exp(iLgiAt) (3.38)

This formalism allows us to easily see the difference between the different flavors of Verlet inte-
grators. The leap-frog integrator can be seen as starting with Eq. 3.37 with the exp (i L1 At) term,
instead of the half-step velocity term, yielding

exp(iLnAt) = exp (iL1At)exp (iLaAt) + O(A). (3.39)

Here, the full step in velocity is between ¢ — %At and t + %At, since it is a combination of the
velocity half steps in velocity Verlet. For future times ¢t = n/At, this becomes

exp(iLnAt) = (exp(iLlAt)exp(iLgAt)>. (3.40)

Although at first this does not appear symmetric, as long as the full velocity step is between ¢ — %At
and t + %At, then this is simply a way of starting velocity Verlet at a different place in the cycle.

Even though the trajectory and thus potential energies are identical between leap-frog and velocity
Verlet, the kinetic energy and temperature will not necessarily be the same. Standard velocity
Verlet uses the velocities at the ¢ to calculate the kinetic energy and thus the temperature only at
time ¢; the kinetic energy is then a sum over all particles

KEun(t) = Z( ! vi(t)>2

2m¢
1 /1 1 1 1 2
= > oy <2vi(t — A1)+ Fuilt + 2At)> : (3.41)

i

with the square on the outside of the average. Standard leap-frog calculates the kinetic energy at
time ¢ based on the average kinetic energies at the timesteps ¢ + %At and t — %At, or the sum over
all particles

1 /1 1 1 1
K Eaverage(t) = > T <2vi(t — 5At)2 +gvilt + 2At)2> , (3.42)

i
where the square is inside the average.

A non-standard variant of velocity Verlet which averages the kinetic energies K E'(t + %At) and
KE(t — %At), exactly like leap-frog, is also now implemented in GROMACS (as .mdp file
option md-vv-avek). Without temperature and pressure coupling, velocity Verlet with half-
step-averaged kinetic energies and leap-frog will be identical up to numerical precision. For
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temperature- and pressure-control schemes, however, velocity Verlet with half-step-averaged ki-
netic energies and leap-frog will be different, as will be discussed in the section in thermostats and
barostats.

The half-step-averaged kinetic energy and temperature are slightly more accurate for a given step
size; the difference in average kinetic energies using the half-step-averaged kinetic energies (md
and md-vv-avek) will be closer to the kinetic energy obtained in the limit of small step size than
will the full-step kinetic energy (using md-vv). For NVE simulations, this difference is usually not
significant, since the positions and velocities of the particles are still identical; it makes a difference
in the way the the temperature of the simulations are interpreted, but not in the trajectories that
are produced. Although the kinetic energy is more accurate with the half-step-averaged method,
meaning that it changes less as the timestep gets large, it is also more noisy. The RMS deviation
of the total energy of the system (sum of kinetic plus potential) in the half-step-averaged kinetic
energy case will be higher (about twice as high in most cases) than the full-step kinetic energy.
The drift will still be the same, however, as again, the trajectories are identical.

For NVT simulations, however, there will be a difference, as discussed in the section on temper-
ature control, since the velocities of the particles are adjusted such that kinetic energies of the
simulations, which can be calculated either way, reach the distribution corresponding to the set
temperature. In this case, the three methods will not give identical results.

Because the velocity and position are both defined at the same time ¢ the velocity Verlet integrator
can be used for some methods, especially rigorously correct pressure control methods, that are not
actually possible with leap-frog. The integration itself takes negligibly more time than leap-frog,
but twice as many communication calls are currently required. In most cases, and especially for
large systems where communication speed is important for parallelization and differences between
thermodynamic ensembles vanish in the 1/N limit, and when only NVT ensembles are required,
leap-frog will likely be the preferred integrator. For pressure control simulations where the fine
details of the thermodynamics are important, only velocity Verlet allows the true ensemble to be
calculated. In either case, simulation with double precision may be required to get fine details of
thermodynamics correct.

3.4.7 Multiple time stepping

Several other simulation packages uses multiple time stepping for bonds and/or the PME mesh
forces. In GROMACS we have not implemented this (yet), since we use a different philosophy.
Bonds can be constrained (which is also a more sound approximation of a physical quantum
oscillator), which allows the smallest time step to be increased to the larger one. This not only
halves the number of force calculations, but also the update calculations. For even larger time
steps, angle vibrations involving hydrogen atoms can be removed using virtual interaction sites
(see sec. 6.10), which brings the shortest time step up to PME mesh update frequency of a multiple
time stepping scheme.

3.4.8 Temperature coupling

While direct use of molecular dynamics gives rise to the NVE (constant number, constant vol-
ume, constant energy ensemble), most quantities that we wish to calculate are actually from a
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constant temperature (NVT) ensemble, also called the canonical ensemble. GROMACS can use
the weak-coupling scheme of Berendsen [26], stochastic randomization through the Andersen
thermostat [27], the extended ensemble Nosé-Hoover scheme [28, 29], or a velocity-rescaling
scheme [30] to simulate constant temperature, with advantages of each of the schemes laid out
below.

There are several other reasons why it might be necessary to control the temperature of the system
(drift during equilibration, drift as a result of force truncation and integration errors, heating due to
external or frictional forces), but this is not entirely correct to do from a thermodynamic standpoint,
and in some cases only masks the symptoms (increase in temperature of the system) rather than the
underlying problem (deviations from correct physics in the dynamics). For larger systems, errors
in ensemble averages and structural properties incurred by using temperature control to remove
slow drifts in temperature appear to be negligible, but no completely comprehensive comparisons
have been carried out, and some caution must be taking in interpreting the results.

When using temperature and/or pressure coupling the total energy is no longer conserved. In-
stead there is a conserved energy quantity the formula of which will depend on the combination or
temperature and pressure coupling algorithm used. For all coupling algorithms, except for Ander-
sen temperature coupling and Parrinello-Rahman pressure coupling combined with shear stress,
the conserved energy quantity is computed and stored in the energy and log file. Note that this
quantity will not be conserved when external forces are applied to the system, such as pulling on
group with a changing distance or an electric field. Furthermore, how well the energy is conserved
depends on the accuracy of all algorithms involved in the simulation. Usually the algorithms that
cause most drift are constraints and the pair-list buffer, depending on the parameters used.

Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling with first-order kinetics to an external heat bath
with given temperature 7y. See ref. [31] for a comparison with the Nosé-Hoover scheme. The
effect of this algorithm is that a deviation of the system temperature from 7j is slowly corrected
according to:
dar  To—-T
dat 7

(3.43)

which means that a temperature deviation decays exponentially with a time constant 7. This
method of coupling has the advantage that the strength of the coupling can be varied and adapted
to the user requirement: for equilibration purposes the coupling time can be taken quite short (e.g.
0.01 ps), but for reliable equilibrium runs it can be taken much longer (e.g. 0.5 ps) in which case
it hardly influences the conservative dynamics.

The Berendsen thermostat suppresses the fluctuations of the kinetic energy. This means that one
does not generate a proper canonical ensemble, so rigorously, the sampling will be incorrect. This
error scales with 1/, so for very large systems most ensemble averages will not be affected sig-
nificantly, except for the distribution of the kinetic energy itself. However, fluctuation properties,
such as the heat capacity, will be affected. A similar thermostat which does produce a correct
ensemble is the velocity rescaling thermostat [30] described below.

The heat flow into or out of the system is affected by scaling the velocities of each particle every
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step, or every nc steps, with a time-dependent factor A, given by:

1/2
nTcAt To
1+ -1 (3.44)
{T< ) H

A= T

The parameter 77 is close, but not exactly equal, to the time constant 7 of the temperature coupling
(eqn. 3.43):
T = 2Cy 17 /Nark (3.45)

where CYy is the total heat capacity of the system, k is Boltzmann’s constant, and Ny is the
total number of degrees of freedom. The reason that 7 # 7p is that the kinetic energy change
caused by scaling the velocities is partly redistributed between kinetic and potential energy and
hence the change in temperature is less than the scaling energy. In practice, the ratio 7 /7 ranges
from 1 (gas) to 2 (harmonic solid) to 3 (water). When we use the term “temperature coupling
time constant,” we mean the parameter 7. Note that in practice the scaling factor X is limited
to the range of 0.8 <= A\ <= 1.25, to avoid scaling by very large numbers which may crash the
simulation. In normal use, A will always be much closer to 1.0.

The thermostat modifies the kinetic energy at each scaling step by:
AE, = (A —1)%E (3.46)

The sum of these changes over the run needs to subtracted from the total energy to obtain the
conserved energy quantity.

Velocity-rescaling temperature coupling

The velocity-rescaling thermostat [30] is essentially a Berendsen thermostat (see above) with an
additional stochastic term that ensures a correct kinetic energy distribution by modifying it accord-
ing to
dt KKy dW
dK = (Kg — K)— +2 0=
() Ny /1T
where K is the kinetic energy, /Ny the number of degrees of freedom and dIW' a Wiener process.
There are no additional parameters, except for a random seed. This thermostat produces a correct
canonical ensemble and still has the advantage of the Berendsen thermostat: first order decay of

temperature deviations and no oscillations.

(3.47)

Andersen thermostat

One simple way to maintain a thermostatted ensemble is to take an NV E integrator and pe-
riodically re-select the velocities of the particles from a Maxwell-Boltzmann distribution. [27]
This can either be done by randomizing all the velocities simultaneously (massive collision) ev-
ery 7r/At steps (andersen-massive), or by randomizing every particle with some small
probability every timestep (andersen), equal to At/7, where in both cases At is the timestep
and 7 is a characteristic coupling time scale. Because of the way constraints operate, all par-
ticles in the same constraint group must be randomized simultaneously. Because of paralleliza-
tion issues, the andersen version cannot currently (5.0) be used in systems with constraints.
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andersen-massive can be used regardless of constraints. This thermostat is also currently
only possible with velocity Verlet algorithms, because it operates directly on the velocities at each
timestep.

This algorithm completely avoids some of the ergodicity issues of other thermostatting algorithms,
as energy cannot flow back and forth between energetically decoupled components of the system
as in velocity scaling motions. However, it can slow down the kinetics of system by randomizing
correlated motions of the system, including slowing sampling when 77 is at moderate levels (less
than 10 ps). This algorithm should therefore generally not be used when examining kinetics or
transport properties of the system. [32]

Nosé-Hoover temperature coupling

The Berendsen weak-coupling algorithm is extremely efficient for relaxing a system to the target
temperature, but once the system has reached equilibrium it might be more important to probe a
correct canonical ensemble. This is unfortunately not the case for the weak-coupling scheme.

To enable canonical ensemble simulations, GROMACS also supports the extended-ensemble ap-
proach first proposed by Nosé [28] and later modified by Hoover [29]. The system Hamiltonian
is extended by introducing a thermal reservoir and a friction term in the equations of motion. The
friction force is proportional to the product of each particle’s velocity and a friction parameter, .
This friction parameter (or “heat bath” variable) is a fully dynamic quantity with its own momen-
tum (p¢) and equation of motion; the time derivative is calculated from the difference between the
current kinetic energy and the reference temperature.

In this formulation, the particles’ equations of motion in Fig. 3.3 are replaced by:

dQT‘Z' _ FZ' V23 dTZ'

N 3.48
a2 m;  Q dt’ (3:48)
where the equation of motion for the heat bath parameter ¢ is:
dpg
— = (T"-1Tp). 3.49
a ( 0) (3.49)

The reference temperature is denoted 7, while 7' is the current instantaneous temperature of the
system. The strength of the coupling is determined by the constant () (usually called the “mass
parameter” of the reservoir) in combination with the reference temperature. !

The conserved quantity for the Nosé-Hoover equations of motion is not the total energy, but rather

N 2

p; 3
U(ry,re,...,7 —
2 2mi+ (ri,m2 N)+2Q

)

H= + NykTE, (3.50)

where N is the total number of degrees of freedom.

In our opinion, the mass parameter is a somewhat awkward way of describing coupling strength,
especially due to its dependence on reference temperature (and some implementations even in-
clude the number of degrees of freedom in your system when defining (). To maintain the cou-
pling strength, one would have to change () in proportion to the change in reference temperature.

'Note that some derivations, an alternative notation Ealt = Ve = D¢ /Q is used.
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For this reason, we prefer to let the GROMACS user work instead with the period 71 of the oscil-
lations of kinetic energy between the system and the reservoir instead. It is directly related to )
and Tj via:

T %Tg
4m2
This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength (similar
to the weak-coupling relaxation), and in addition 77 is independent of system size and reference
temperature.

Q= (3.51)

It is however important to keep the difference between the weak-coupling scheme and the Nosé-
Hoover algorithm in mind: Using weak coupling you get a strongly damped exponential relax-
ation, while the Nosé-Hoover approach produces an oscillatory relaxation. The actual time it
takes to relax with Nosé-Hoover coupling is several times larger than the period of the oscillations
that you select. These oscillations (in contrast to exponential relaxation) also means that the time
constant normally should be 4-5 times larger than the relaxation time used with weak coupling,
but your mileage may vary.

Nosé-Hoover dynamics in simple systems such as collections of harmonic oscillators, can be non-
ergodic, meaning that only a subsection of phase space is ever sampled, even if the simulations
were to run for infinitely long. For this reason, the Nosé-Hoover chain approach was developed,
where each of the Nosé-Hoover thermostats has its own Nosé-Hoover thermostat controlling its
temperature. In the limit of an infinite chain of thermostats, the dynamics are guaranteed to be
ergodic. Using just a few chains can greatly improve the ergodicity, but recent research has shown
that the system will still be nonergodic, and it is still not entirely clear what the practical effect of
this [33]. Currently, the default number of chains is 10, but this can be controlled by the user. In the
case of chains, the equations are modified in the following way to include a chain of thermostatting
particles [34]:

Eri _ Fi pgdri
dt? N my; Ql dt
dp& DPey
— (T =T, — pe, 252
2
dpg; s v Pg;_, Pe;
1=2... — g _ kT _ ) 41
dt Qi-1 P Qi+1
2
dpEN Pen_y
= —=— — kT (3.52)
dt <QN—1
The conserved quantity for Nosé-Hoover chains is
N P, M2 M
H=Y L U(ri,ro,...,7N) + > ok + NpkTE + KT Y &, (3.53)
i 2 i1 2@ k=2

The values and velocities of the Nosé-Hoover thermostat variables are generally not included in
the output, as they take up a fair amount of space and are generally not important for analysis
of simulations, but by setting an mdp option the values of all the positions and velocities of all
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Nosé-Hoover particles in the chain are written to the . edr file. Leap-frog simulations currently
can only have Nosé-Hoover chain lengths of 1, but this will likely be updated in later version.

As described in the integrator section, for temperature coupling, the temperature that the algorithm
attempts to match to the reference temperature is calculated differently in velocity Verlet and leap-
frog dynamics. Velocity Verlet (md-vv) uses the full-step kinetic energy, while leap-frog and
md-vv-avek use the half-step-averaged kinetic energy.

We can examine the Trotter decomposition again to better understand the differences between
these constant-temperature integrators. In the case of Nosé-Hoover dynamics (for simplicity, using
a chain with V = 1, with more details in Ref. [35]), we split the Liouville operator as

iL =1L +1iLo 4+ iLnuc, (3.54)

where

iy = Z z}ai

=1 LT
iLy = Y Fy- ai.
=1 ?
N
. De pe O 0
iLnge = —=v; Vo, + ===+ (T —To) — (3.55)
; Q Q 9 Ope

For standard velocity Verlet with Nosé-Hoover temperature control, this becomes

exp(iLAt) = exp (iLnucAt/2)exp (iLaAt/2)
exp (iL1At) exp (iLyAt/2) exp (iLxucAt/2) + O(At3).  (3.56)

For half-step-averaged temperature control using md-vv-avek, this decomposition will not work,
since we do not have the full step temperature until after the second velocity step. However, we
can construct an alternate decomposition that is still reversible, by switching the place of the NHC
and velocity portions of the decomposition:

exp(iLAt) = exp (iLaAt/2)exp (iLnucAt/2) exp (1L At)
exp (iLxpcAt/2) exp (iLoAt/2) + O(At?) (3.57)

This formalism allows us to easily see the difference between the different flavors of velocity
Verlet integrator. The leap-frog integrator can be seen as starting with Eq. 3.57 just before the
exp (L1 At) term, yielding:

exp(iLAt) = exp (iL1At)exp (iLnucAt/2)
exp (iLoAt) exp (iLnucAt/2) + O(At?) (3.58)

and then using some algebra tricks to solve for some quantities are required before they are actually
calculated [36].
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Group temperature coupling

In GROMACS temperature coupling can be performed on groups of atoms, typically a protein and
solvent. The reason such algorithms were introduced is that energy exchange between different
components is not perfect, due to different effects including cut-offs etc. If now the whole system
is coupled to one heat bath, water (which experiences the largest cut-off noise) will tend to heat
up and the protein will cool down. Typically 100 K differences can be obtained. With the use of
proper electrostatic methods (PME) these difference are much smaller but still not negligible. The
parameters for temperature coupling in groups are given in the mdp file. Recent investigation has
shown that small temperature differences between protein and water may actually be an artifact
of the way temperature is calculated when there are finite timesteps, and very large differences in
temperature are likely a sign of something else seriously going wrong with the system, and should
be investigated carefully [37].

One special case should be mentioned: it is possible to temperature-couple only part of the system,
leaving other parts without temperature coupling. This is done by specifying —1 for the time con-
stant 77 for the group that should not be thermostatted. If only part of the system is thermostatted,
the system will still eventually converge to an NVT system. In fact, one suggestion for minimiz-
ing errors in the temperature caused by discretized timesteps is that if constraints on the water
are used, then only the water degrees of freedom should be thermostatted, not protein degrees of
freedom, as the higher frequency modes in the protein can cause larger deviations from the “true”
temperature, the temperature obtained with small timesteps [37].

3.4.9 Pressure coupling

In the same spirit as the temperature coupling, the system can also be coupled to a “pressure
bath.” GROMACS supports both the Berendsen algorithm [26] that scales coordinates and box
vectors every step, the extended-ensemble Parrinello-Rahman approach [38, 39], and for the ve-
locity Verlet variants, the Martyna-Tuckerman-Tobias-Klein (MTTK) implementation of pressure
control [35]. Parrinello-Rahman and Berendsen can be combined with any of the temperature
coupling methods above. MTTK can only be used with Nosé-Hoover temperature control. From
5.1 afterwards, it can only used when the system does not have constraints.

Berendsen pressure coupling

The Berendsen algorithm rescales the coordinates and box vectors every step, or every npc steps,
with a matrix p, which has the effect of a first-order kinetic relaxation of the pressure towards a
given reference pressure Py according to

P Py—P
a7,

(3.59)

The scaling matrix g is given by

npcAt
pij = Oij — I;CT@']‘{POU — Py(t)}. (3.60)
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Here, (3 is the isothermal compressibility of the system. In most cases this will be a diagonal
matrix, with equal elements on the diagonal, the value of which is generally not known. It suffices
to take a rough estimate because the value of 3 only influences the non-critical time constant of
the pressure relaxation without affecting the average pressure itself. For water at 1 atm and 300 K
f=4.6x10"1Pa~! =4.6 x 107° bar!, which is 7.6 x 10~* MD units (see chapter 2). Most
other liquids have similar values. When scaling completely anisotropically, the system has to be
rotated in order to obey eqn. 3.1. This rotation is approximated in first order in the scaling, which
is usually less than 10~*. The actual scaling matrix g’ is

Pz Moy + Pyz Pz T Moz
p = 0 Hyy Hyz + flzy | - (3.61)
0 0 Hzz

The velocities are neither scaled nor rotated. Since the equations of motion are modified by pres-
sure coupling, the conserved energy quantity also needs to be modified. For first order pressure
coupling, the work the barostat applies to the system every step needs to be subtracted from the
total energy to obtain the conserved energy quantity:

=Y (i = i) PV =Y 2(pij — 0ij) =5 (3.62)
i

,J

where d;; is the Kronecker delta and = is the virial. Note that the factor 2 originates from the
factor % in the virial definition (eqn. 3.24).

In GROMACS, the Berendsen scaling can also be done isotropically, which means that instead
of P a diagonal matrix with elements of size trace(P)/3 is used. For systems with interfaces,
semi-isotropic scaling can be useful. In this case, the x/y-directions are scaled isotropically and
the z direction is scaled independently. The compressibility in the x/y or z-direction can be set to
zero, to scale only in the other direction(s).

If you allow full anisotropic deformations and use constraints you might have to scale more slowly
or decrease your timestep to avoid errors from the constraint algorithms. It is important to note
that although the Berendsen pressure control algorithm yields a simulation with the correct average
pressure, it does not yield the exact NPT ensemble, and it is not yet clear exactly what errors this
approximation may yield.

Parrinello-Rahman pressure coupling

In cases where the fluctuations in pressure or volume are important per se (e.g. to calculate ther-
modynamic properties), especially for small systems, it may be a problem that the exact ensemble
is not well defined for the weak-coupling scheme, and that it does not simulate the true NPT
ensemble.

GROMACS also supports constant-pressure simulations using the Parrinello-Rahman approach [38,
39], which is similar to the Nosé-Hoover temperature coupling, and in theory gives the true NPT
ensemble. With the Parrinello-Rahman barostat, the box vectors as represented by the matrix b
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obey the matrix equation of motion?

db2 —1g/—1

The volume of the box is denoted V', and W is a matrix parameter that determines the strength of
the coupling. The matrices P and P, are the current and reference pressures, respectively.

The equations of motion for the particles are also changed, just as for the Nosé-Hoover coupling.
In most cases you would combine the Parrinello-Rahman barostat with the Nosé-Hoover thermo-
stat, but to keep it simple we only show the Parrinello-Rahman modification here. The modified
Hamiltonian, which will be conserved, is:

1 db;; \ 2
By + Bian + X PV + 3 305 (2 (3.64)
( ()

The equations of motion for the atoms, obtained from the Hamiltonian are:

dQTZ‘ Fz‘ d’l"z‘
dv’ db
M = b! [bdt + dtb’] bt (3.66)

This extra term has the appearance of a friction, but it should be noted that it is ficticious, and rather
an effect of the Parrinello-Rahman equations of motion being defined with all particle coordinates
represented relative to the box vectors, while GROMACS] uses normal Cartesian coordinates for
positions, velocities and forces. It is worth noting that the kinetic energy too should formally be
calculated based on velocities relative to the box vectors. This can have an effect e.g. for external
constant stress, but for now we only support coupling to constant external pressures, and for any
normal simulation the velocities of box vectors should be extremely small compared to particle
velocities. Gang Liu has done some work on deriving this for Cartesian coordinates[40] that we
will try to implement at some point in the future together with support for external stress.

The (inverse) mass parameter matrix W ! determines the strength of the coupling, and how the
box can be deformed. The box restriction (3.1) will be fulfilled automatically if the corresponding
elements of W1 are zero. Since the coupling strength also depends on the size of your box,
we prefer to calculate it automatically in GROMACS. You only have to provide the approximate
isothermal compressibilities 3 and the pressure time constant 7, in the input file (L is the largest

box matrix element):
42 Bij
wl) = 7, 3.67
( )ij 3721 (3.67)

Just as for the Nosé-Hoover thermostat, you should realize that the Parrinello-Rahman time con-
stant is not equivalent to the relaxation time used in the Berendsen pressure coupling algorithm.
In most cases you will need to use a 4-5 times larger time constant with Parrinello-Rahman cou-
pling. If your pressure is very far from equilibrium, the Parrinello-Rahman coupling may result in
very large box oscillations that could even crash your run. In that case you would have to increase

The box matrix representation b in GROMACS corresponds to the transpose of the box matrix representation b in
the paper by Nosé and Klein. Because of this, some of our equations will look slightly different.
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the time constant, or (better) use the weak-coupling scheme to reach the target pressure, and then
switch to Parrinello-Rahman coupling once the system is in equilibrium. Additionally, using the
leap-frog algorithm, the pressure at time ¢ is not available until after the time step has completed,
and so the pressure from the previous step must be used, which makes the algorithm not directly
reversible, and may not be appropriate for high precision thermodynamic calculations.

Surface-tension coupling

When a periodic system consists of more than one phase, separated by surfaces which are par-
allel to the xy-plane, the surface tension and the z-component of the pressure can be coupled to
a pressure bath. Presently, this only works with the Berendsen pressure coupling algorithm in
GROMACS. The average surface tension y(¢) can be calculated from the difference between the
normal and the lateral pressure

L.
N(t) = ;/O {Pzz(Z,t) - P”(z’t);Pyy(Z’w}dz (3.68)
L,

Pra(t) + Pyy(t) } (3.69)

- = {Pzz(t) - ;

where L, is the height of the box and n is the number of surfaces. The pressure in the z-direction
is corrected by scaling the height of the box with (i,

Tp
por =14 B AP, 3.71)

This is similar to normal pressure coupling, except that the factor of 1/3 is missing. The pressure
correction in the z-direction is then used to get the correct convergence for the surface tension to
the reference value 7. The correction factor for the box length in the x/y-direction is

— At "0 Pra(t) + Pyy(t) })
Hofy =145 By <,uzz I {Pzz(t) + AP 5 (3.72)

The value of (3., is more critical than with normal pressure coupling. Normally an incorrect
compressibility will just scale 7, but with surface tension coupling it affects the convergence of
the surface tension. When f3., is set to zero (constant box height), AP, , is also set to zero, which
is necessary for obtaining the correct surface tension.

MTTK pressure control algorithms

As mentioned in the previous section, one weakness of leap-frog integration is in constant pressure
simulations, since the pressure requires a calculation of both the virial and the kinetic energy at the
full time step; for leap-frog, this information is not available until after the full timestep. Velocity
Verlet does allow the calculation, at the cost of an extra round of global communication, and can
compute, mod any integration errors, the true NPT ensemble.

The full equations, combining both pressure coupling and temperature coupling, are taken from
Martyna et al. [35] and Tuckerman [41] and are referred to here as MTTK equations (Martyna-
Tuckerman-Tobias-Klein). We introduce for convenience ¢ = (1/3)In(V/Vy), where 1} is a
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reference volume. The momentum of € is ve = p./W = é = 14 /3V, and define v = 1+ 3 /Ny,
(see Ref [41])

The isobaric equations are

. _ Pbi | Pe
T o= m¢+er
Di 1 De D;
= —F, Pe
m; m; W m;
c o P
w
. N 2
Pe 3V 3
— = — (P —P -1 =1, 3.73
w = g Pm P+ (@ )(7;%) (3.73)
(3.74)
where
1 N p2
F)in - Pin_Pvirzi o ZFZ . 3.75
Lo w 122 (o) 679

The terms including « are required to make phase space incompressible [41]. The e acceleration
term can be rewritten as

% - % (P — Peir — P) (3.76)

In terms of velocities, these equations become

P = V; + VT
1
v; = —F; — avw;
m;
€ = v
. 3V N o
Ve = W(Pint —P)+ (a—1) (nzzzl Qmi’v?>
Puw = Pq P-—LNE-2 - F; (3.77)
int — kin vir — 3V ra 2mz’U7; T i .
For these equations, the conserved quantity is
N p2 P
H= L U(ry,ro,..., * + PV 3.78
; 2m,; +U (71,72 rN) + TV + (3.78)

The next step is to add temperature control. Adding Nosé-Hoover chains, including to the barostat
degree of freedom, where we use 7 for the barostat Nosé-Hoover variables, and Q' for the coupling
constants of the thermostats of the barostats, we get

. D; De
- P
! mi; W'
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D; 1 Pe P; D& Py
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k—1
The conserved quantity is now
N 2
=y Pi U (ry, e, rN) + LS + PV +
i— 2mi 2W
M2 M2 M M
3 25; 3 oo+ NIRTE KT S €t KT 3 (3.81)
k=1 <k =1 “¥k =2 k=1

Returning to the Trotter decomposition formalism, for pressure control and temperature con-
trol [35] we get:

1L =1iL1 +iLlo +tLey +iLe 2 + iLNHC—baro + tLNHC (3.82)

where “NHC-baro” corresponds to the Nosé-Hoover chain of the barostat, and NHC corresponds
to the NHC of the particles,

N
i = Y {p + pﬁn} B (3.83)
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iLy = Z F;— a— Bii (3.84)
, pe 0
L, = =— .
thoe,1 W De (3.85)
iLep = GEi (3.86)
Ipe
and where
Ge =3V (aPn — Poir — P) (3.87)
Using the Trotter decomposition, we get
exp(iLAt) = exp (iLNHC-baroAt/2) exp (iLnucAt/2)
exp (1L 2At/2) exp (1L At/2)
exp (L1 At) exp (iL1At)
exp (iLoAt/2) exp (iLe2At/2)
exp (iLNaCcAL/2) exp (i LNHC—baro AL/2) + O(AL?) (3.88)

The action of exp (iL; At) comes from the solution of the the differential equation 7; = v; + v7;
with v; = p;/m; and v, constant with initial condition r;(0), evaluate at ¢ = At¢. This yields the
evolution

inh (v.At/2)

At 0)e<Al 4 Atw; (0)evedt/2 T2t 2) 3.89

(AL = ri(0)e 1 4 Ao (o)A (3:89)

The action of exp (iL2At/2) comes from the solution of the differential equation v; = F L—
Qev;, yielding

_ At _ sinh (av At/4)
(At/2) = v, aveAt/2 F. aveAt/4 € 3.90
v;(At/2) = v;(0)e +—2mi i(0)e oAl (3.90)

md-vv-avek uses the full step kinetic energies for determining the pressure with the pressure con-
trol, but the half-step-averaged kinetic energy for the temperatures, which can be written as a
Trotter decomposition as

exp(iLAt) = exp (ILNHC—baroAt/2) exp (iLe2At/2) exp (iL2At/2)
exp (1LnucAt/2) exp (iLe1 At) exp (i L1 At) exp (iLnucAt/2)
exp (iLaAt/2) exp (iLe 2 At/2) exp (i LNHC-baroAt/2) + O(AL?)(3.91)

With constraints, the equations become significantly more complicated, in that each of these equa-
tions need to be solved iteratively for the constraint forces. Before GROMACS 5.1, these iterative
constraints were solved as described in [42]. From GROMACS 5.1 onward, MTTK with con-
straints has been removed because of numerical stability issues with the iterations.

Infrequent evaluation of temperature and pressure coupling

Temperature and pressure control require global communication to compute the kinetic energy and
virial, which can become costly if performed every step for large systems. We can rearrange the
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Trotter decomposition to give alternate symplectic, reversible integrator with the coupling steps
every n steps instead of every steps. These new integrators will diverge if the coupling time step
is too large, as the auxiliary variable integrations will not converge. However, in most cases, long
coupling times are more appropriate, as they disturb the dynamics less [35].

Standard velocity Verlet with Nosé-Hoover temperature control has a Trotter expansion

exp(iLAt) =~ exp (iLnpgcAt/2)exp (iLaAt/2)
exp (1L1At) exp (iLaAt/2) exp (i LypcAt/2) . (3.92)

If the Nosé-Hoover chain is sufficiently slow with respect to the motions of the system, we can
write an alternate integrator over n steps for velocity Verlet as

exp(tLAt) =~ (exp (iLnuc(nAt/2)) [exp (iLaAt/2)
exp (1L1At) exp (iLaAt/2)]" exp (i Lnuc(nAt/2)) . (3.93)

For pressure control, this becomes

exp(iLAt) =~ exp (iLNHC—baro(nAL/2)) exp (i Lnuc(nAt/2))
(iLe2(nAt/2)) [exp (iL2At/2)
exp (L 1At) exp (1L At)
exp (iLaAt/2)]" exp (iLe2(nAt/2))
exp (iLnuc(nAt/2)) exp (iLNaC—baro(RAL/2)), (3.94)

exp (7

L
L

where the box volume integration occurs every step, but the auxiliary variable integrations happen
every n steps.

3.4.10 The complete update algorithm

The complete algorithm for the update of velocities and coordinates is given using leap-frog in
Fig. 3.8. The SHAKE algorithm of step 4 is explained below.

GROMACS has a provision to “freeze” (prevent motion of) selected particles, which must be
defined as a “freeze group.” This is implemented using a freeze factor f ,, which is a vector, and
differs for each freeze group (see sec. 3.3). This vector contains only zero (freeze) or one (don’t
freeze). When we take this freeze factor and the external acceleration ay, into account the update
algorithm for the velocities becomes

At At F(t)
U(t + 7) — fg * )\ % ’U(t — ?) + TAt + apAt| (3.95)

where g and h are group indices which differ per atom.

3.4.11 Output step

The most important output of the MD run is the trajectory file, which contains particle coordi-
nates and (optionally) velocities at regular intervals. The trajectory file contains frames that could
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THE UPDATE ALGORITHM

Given:
Positions r of all atoms at time ¢
Velocities v of all atoms at time ¢ — %At
Accelerations F'/m on all atoms at time ¢.
(Forces are computed disregarding any constraints)
Total kinetic energy and virial at t — At
\
1. Compute the scaling factors A and p
according to eqns. 3.44 and 3.60

I
2. Update and scale velocities: v = A\(v + aAt)

Y

3. Compute new unconstrained coordinates: ' = r + v’ At

4

. . . . /
4. Apply constraint algorithm to coordinates: constrain(r — r”; r)

4

5. Correct velocities for constraints: v = (r” — r) /At

4

6. Scale coordinates and box: 7 = ur”;b = ub

Figure 3.8: The MD update algorithm with the leap-frog integrator
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include positions, velocities and/or forces, as well as information about the dimensions of the sim-
ulation volume, integration step, integration time, etc. The interpretation of the time varies with
the integrator chosen, as described above. For Velocity Verlet integrators, velocities labeled at
time ¢ are for that time. For other integrators (e.g. leap-frog, stochastic dynamics), the velocities
labeled at time ¢ are for time ¢ — %At.

Since the trajectory files are lengthy, one should not save every step! To retain all information it
suffices to write a frame every 15 steps, since at least 30 steps are made per period of the highest
frequency in the system, and Shannon’s sampling theorem states that two samples per period of
the highest frequency in a band-limited signal contain all available information. But that still gives
very long files! So, if the highest frequencies are not of interest, 10 or 20 samples per ps may
suffice. Be aware of the distortion of high-frequency motions by the stroboscopic effect, called
aliasing: higher frequencies are mirrored with respect to the sampling frequency and appear as
lower frequencies.

GROMACS can also write reduced-precision coordinates for a subset of the simulation system to
a special compressed trajectory file format. All the other tools can read and write this format. See
the User Guide for details on how to set up your .mdp file to have mdrun use this feature.

3.5 Shell molecular dynamics

GROMACS can simulate polarizability using the shell model of Dick and Overhauser [43]. In
such models a shell particle representing the electronic degrees of freedom is attached to a nucleus
by a spring. The potential energy is minimized with respect to the shell position at every step
of the simulation (see below). Successful applications of shell models in GROMACS have been
published for Ny [44] and water [45].

3.5.1 Optimization of the shell positions
The force F'g on a shell particle S can be decomposed into two components
Fs = Fiondg + Frp (3.96)

where F'y,,,q denotes the component representing the polarization energy, usually represented by
a harmonic potential and F',,;, is the sum of Coulomb and van der Waals interactions. If we assume
that F',,; is almost constant we can analytically derive the optimal position of the shell, i.e. where
F'g =0. If we have the shell S connected to atom A we have

Fiong = kp(xs —xa). (3.97)

In an iterative solver, we have positions xg(n) where n is the iteration count. We now have at
iteration n
F,, = Fg—ky(xs(n)—xa) (3.98)

and the optimal position for the shells xg(n + 1) thus follows from

Fg—ky(xs(n) —xa) +kp(zs(n+1) —xs) =0 (3.99)



3.6. Constraint algorithms 45

if we write
Axg =xs(n+1) —xs(n) (3.100)
we finally obtain
Axg = Fg/ky (3.101)
which then yields the algorithm to compute the next trial in the optimization of shell positions
xs(n+1) = xzg(n) + Fg/ky. (3.102)

3.6 Constraint algorithms

Constraints can be imposed in GROMACS using LINCS (default) or the traditional SHAKE
method.

3.6.1 SHAKE

The SHAKE [46] algorithm changes a set of unconstrained coordinates r’ to a set of coordinates
r” that fulfill a list of distance constraints, using a set r reference, as

SHAKE(r — r"; r) (3.103)

This action is consistent with solving a set of Lagrange multipliers in the constrained equations
of motion. SHAKE needs a relative tolerance; it will continue until all constraints are satisfied
within that relative tolerance. An error message is given if SHAKE cannot reset the coordinates
because the deviation is too large, or if a given number of iterations is surpassed.

Assume the equations of motion must fulfill K holonomic constraints, expressed as

op(ry...rn)=0; k=1.. K. (3.104)
For example, (71 — 72)% — b? = 0. Then the forces are defined as
0 (V + i /\kak> (3.105)
or; = ’ )

where Ay are Lagrange multipliers which must be solved to fulfill the constraint equations. The
second part of this sum determines the constraint forces G;, defined by

G i A 2o
i == k
=1 T

5 (3.106)

The displacement due to the constraint forces in the leap-frog or Verlet algorithm is equal to
(Gi/m;)(At)2. Solving the Lagrange multipliers (and hence the displacements) requires the so-
lution of a set of coupled equations of the second degree. These are solved iteratively by SHAKE.

For the special case of rigid water molecules, that often make up more than 80% of the simulation
system we have implemented the SETTLE algorithm [47] (sec. 5.6).

For velocity Verlet, an additional round of constraining must be done, to constrain the velocities of
the second velocity half step, removing any component of the velocity parallel to the bond vector.
This step is called RATTLE, and is covered in more detail in the original Andersen paper [48].
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. projecting out correction for
unconstrained . .
forces working — rotational
update )
along the bonds lengthening

Figure 3.9: The three position updates needed for one time step. The dashed line is the old bond
of length d, the solid lines are the new bonds. [ = dcos® and p = (2d* — ZQ)%.

3.6.2 LINCS
The LINCS algorithm

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained update [49].
The method is non-iterative, as it always uses two steps. Although LINCS is based on matrices, no
matrix-matrix multiplications are needed. The method is more stable and faster than SHAKE, but
it can only be used with bond constraints and isolated angle constraints, such as the proton angle
in OH. Because of its stability, LINCS is especially useful for Brownian dynamics. LINCS has
two parameters, which are explained in the subsection parameters. The parallel version of LINCS,
P-LINCS, is described in subsection 3.17.3.

The LINCS formulas

We consider a system of N particles, with positions given by a 3N vector (). For molecular
dynamics the equations of motion are given by Newton’s Law

d?r

— =M"'F, 3.107

e ( )
where F is the 3N force vector and M is a 3N x 3N diagonal matrix, containing the masses of
the particles. The system is constrained by K time-independent constraint equations

gi(r):\ril—ri2|—di:0 izl,...,K. (3108)

In a numerical integration scheme, LINCS is applied after an unconstrained update, just like
SHAKE. The algorithm works in two steps (see figure Fig. 3.9). In the first step, the projec-
tions of the new bonds on the old bonds are set to zero. In the second step, a correction is applied
for the lengthening of the bonds due to rotation. The numerics for the first step and the second
step are very similar. A complete derivation of the algorithm can be found in [49]. Only a short
description of the first step is given here.
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A new notation is introduced for the gradient matrix of the constraint equations which appears on

the right hand side of this equation:

_ Ign
87@

Notice that B is a K x 3N matrix, it contains the directions of the constraints. The following equa-

tion shows how the new constrained coordinates 7,1 are related to the unconstrained coordinates

,,,,'UJLC b

n+1 0¥

Bhi (3.109)

Poi1 = (I — TpB,)r"S + T, d =

unc -1 -1 pT\-1 unc (3110)
riS — M B, (B,M " "B,) " (B,ryq —d)
where T = M~ BT(BM~'B”)~". The derivation of this equation from eqns. 3.107 and 3.108

can be found in [49].

This first step does not set the real bond lengths to the prescribed lengths, but the projection of the
new bonds onto the old directions of the bonds. To correct for the rotation of bond ¢, the projection
of the bond, p;, on the old direction is set to

pi = /2d? — 12, (3.111)

where [; is the bond length after the first projection. The corrected positions are
Tri1 = (I = TpBp)rpy1 + Thp. (3.112)

This correction for rotational effects is actually an iterative process, but during MD only one
iteration is applied. The relative constraint deviation after this procedure will be less than 0.0001
for every constraint. In energy minimization, this might not be accurate enough, so the number of
iterations is equal to the order of the expansion (see below).

Half of the CPU time goes to inverting the constraint coupling matrix B,, M ~'BZL which has to
be done every time step. This K x K matrix has 1/m;, +1/m;, on the diagonal. The off-diagonal
elements are only non-zero when two bonds are connected, then the element is cos ¢/m,., where
m,. is the mass of the atom connecting the two bonds and ¢ is the angle between the bonds.

The matrix 7" is inverted through a power expansion. A K x K matrix S is introduced which is
the inverse square root of the diagonal of B,, M _IBZ. This matrix is used to convert the diagonal
elements of the coupling matrix to one:

(B,M'BI)"' =88 Y (B,M'Bl)-15-1§

(3.113)
=S(SB,M'BTS)"'S§=8(I-A,)"'S

The matrix A,, is symmetric and sparse and has zeros on the diagonal. Thus a simple trick can be

used to calculate the inverse:

(I-A,) ' '=T+A,+A2+A>+... (3.114)

This inversion method is only valid if the absolute values of all the eigenvalues of A,, are smaller
than one. In molecules with only bond constraints, the connectivity is so low that this will always
be true, even if ring structures are present. Problems can arise in angle-constrained molecules. By
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constraining angles with additional distance constraints, multiple small ring structures are intro-
duced. This gives a high connectivity, leading to large eigenvalues. Therefore LINCS should NOT
be used with coupled angle-constraints.

For molecules with all bonds constrained the eigenvalues of A are around 0.4. This means that
with each additional order in the expansion eqn. 3.114 the deviations decrease by a factor 0.4. But
for relatively isolated triangles of constraints the largest eigenvalue is around 0.7. Such triangles
can occur when removing hydrogen angle vibrations with an additional angle constraint in alcohol
groups or when constraining water molecules with LINCS, for instance with flexible constraints.
The constraints in such triangles converge twice as slow as the other constraints. Therefore, start-
ing with GROMACS 4, additional terms are added to the expansion for such triangles

(I-A) '~ T+ A+ + AN+ (A 4.+ AN Al (3.115)

where NN; is the normal order of the expansion and A* only contains the elements of A that couple
constraints within rigid triangles, all other elements are zero. In this manner, the accuracy of angle
constraints comes close to that of the other constraints, while the series of matrix vector multi-
plications required for determining the expansion only needs to be extended for a few constraint
couplings. This procedure is described in the P-LINCS paper[50].

The LINCS Parameters

The accuracy of LINCS depends on the number of matrices used in the expansion eqn. 3.114.
For MD calculations a fourth order expansion is enough. For Brownian dynamics with large time
steps an eighth order expansion may be necessary. The order is a parameter in the * .mdp file.
The implementation of LINCS is done in such a way that the algorithm will never crash. Even
when it is impossible to to reset the constraints LINCS will generate a conformation which fulfills
the constraints as well as possible. However, LINCS will generate a warning when in one step a
bond rotates over more than a predefined angle. This angle is set by the user in the * . mdp file.

3.7 Simulated Annealing

The well known simulated annealing (SA) protocol is supported in GROMACS, and you can even
couple multiple groups of atoms separately with an arbitrary number of reference temperatures
that change during the simulation. The annealing is implemented by simply changing the current
reference temperature for each group in the temperature coupling, so the actual relaxation and
coupling properties depends on the type of thermostat you use and how hard you are coupling it.
Since we are changing the reference temperature it is important to remember that the system will
NOT instantaneously reach this value - you need to allow for the inherent relaxation time in the
coupling algorithm too. If you are changing the annealing reference temperature faster than the
temperature relaxation you will probably end up with a crash when the difference becomes too
large.

The annealing protocol is specified as a series of corresponding times and reference temperatures
for each group, and you can also choose whether you only want a single sequence (after which the
temperature will be coupled to the last reference value), or if the annealing should be periodic and
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restart at the first reference point once the sequence is completed. You can mix and match both
types of annealing and non-annealed groups in your simulation.

3.8 Stochastic Dynamics

Stochastic or velocity Langevin dynamics adds a friction and a noise term to Newton’s equations
of motion, as ,

mi% = —mi%% + Fi(r)+ 1y, (3.116)
where ~; is the friction constant [1/ps] and 7; (t) is a noise process with (; (¢) ;j (t+s)) =
2m;y;kpTd(s)d;5. When 1/+; is large compared to the time scales present in the system, one
could see stochastic dynamics as molecular dynamics with stochastic temperature-coupling. But
any processes that take longer than 1/+;, e.g. hydrodynamics, will be dampened. Since each de-
gree of freedom is coupled independently to a heat bath, equilibration of fast modes occurs rapidly.
For simulating a system in vacuum there is the additional advantage that there is no accumulation
of errors for the overall translational and rotational degrees of freedom. When 1/~; is small com-
pared to the time scales present in the system, the dynamics will be completely different from MD,
but the sampling is still correct.

In GROMACS there is one simple and efficient implementation. Its accuracy is equivalent to the
normal MD leap-frog and Velocity Verlet integrator. It is nearly identical to the common way of
discretizing the Langevin equation, but the friction and velocity term are applied in an impulse
fashion [51]. It can be described as:

o= (- %At) + %F(t)At (3.117)

Av = —av'(t+ %At) + %(1 —a?)rf (3.118)
r(t+At) = r(t)+ (v' + ;Afu> At (3.119)
v(t+ %At) = v+ Av (3.120)
a = 1—e 7R (3.121)

where riG is Gaussian distributed noise with i = 0, 0 = 1. The velocity is first updated a full time
step without friction and noise to get v’, identical to the normal update in leap-frog. The friction
and noise are then applied as an impulse at step ¢ + At. The advantage of this scheme is that the
velocity-dependent terms act at the full time step, which makes the correct integration of forces that
depend on both coordinates and velocities, such as constraints and dissipative particle dynamics
(DPD, not implented yet), straightforward. With constraints, the coordinate update eqn. 3.119 is
split into a normal leap-frog update and a Awv. After both of these updates the constraints are
applied to coordinates and velocities.

When using SD as a thermostat, an appropriate value for v is e.g. 0.5 ps~!, since this results in a

friction that is lower than the internal friction of water, while it still provides efficient thermostat-
ting.
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3.9 Brownian Dynamics

In the limit of high friction, stochastic dynamics reduces to Brownian dynamics, also called po-
sition Langevin dynamics. This applies to over-damped systems, i.e. systems in which the inertia
effects are negligible. The equation is

d’l"i 1 o

where ~; is the friction coefficient [amu/ps] and ;(¢) is a noise process with (7;(t) ﬁj(t +35)) =
26(5)d;jkBT/~i;. In GROMACS the equations are integrated with a simple, explicit scheme

ri(t + At) = ri(t) + gFi(r(t)) + /zk;BTg ry, (3.123)
Yi Vi

where riG is Gaussian distributed noise with 4 = 0, o = 1. The friction coefficients y; can be
chosen the same for all particles or as ; = m; y;, where the friction constants ; can be different
for different groups of atoms. Because the system is assumed to be over-damped, large timesteps
can be used. LINCS should be used for the constraints since SHAKE will not converge for large
atomic displacements. BD is an option of the mdrun program.

3.10 Energy Minimization

Energy minimization in GROMACS can be done using steepest descent, conjugate gradients, or I-
bfgs (limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian minimizer...we prefer
the abbreviation). EM is just an option of the mdrun program.

3.10.1 Steepest Descent

Although steepest descent is certainly not the most efficient algorithm for searching, it is robust
and easy to implement.

We define the vector r as the vector of all 3N coordinates. Initially a maximum displacement hg
(e.g. 0.01 nm) must be given.

First the forces F' and potential energy are calculated. New positions are calculated by

Fy

T g 3.124
max(|Fy|) ( )

Th+l =Tp +
where h,, is the maximum displacement and F', is the force, or the negative gradient of the po-
tential V. The notation max(|F',|) means the largest scalar force on any atom. The forces and
energy are again computed for the new positions
If (V.41 < V,,) the new positions are accepted and h,,+1 = 1.2h,,.

If (V.41 > V,,) the new positions are rejected and h,, = 0.2h,,.

The algorithm stops when either a user-specified number of force evaluations has been performed
(e.g. 100), or when the maximum of the absolute values of the force (gradient) components is
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smaller than a specified value €. Since force truncation produces some noise in the energy evalua-
tion, the stopping criterion should not be made too tight to avoid endless iterations. A reasonable
value for € can be estimated from the root mean square force f a harmonic oscillator would exhibit
at a temperature 7. This value is

f = 27vV2mkT, (3.125)

where v is the oscillator frequency, m the (reduced) mass, and k£ Boltzmann’s constant. For a
weak oscillator with a wave number of 100 cm~! and a mass of 10 atomic units, at a temperature
of 1 K, f =7.7kJ mol~! nm~!. A value for ¢ between 1 and 10 is acceptable.

3.10.2 Conjugate Gradient

Conjugate gradient is slower than steepest descent in the early stages of the minimization, but
becomes more efficient closer to the energy minimum. The parameters and stop criterion are the
same as for steepest descent. In GROMACS conjugate gradient can not be used with constraints,
including the SETTLE algorithm for water [47], as this has not been implemented. If water is
present it must be of a flexible model, which can be specified in the » .mdp file by define =
-DFLEXIBLE.

This is not really a restriction, since the accuracy of conjugate gradient is only required for mini-
mization prior to a normal-mode analysis, which cannot be performed with constraints. For most
other purposes steepest descent is efficient enough.

3.10.3 L-BFGS

The original BFGS algorithm works by successively creating better approximations of the inverse
Hessian matrix, and moving the system to the currently estimated minimum. The memory re-
quirements for this are proportional to the square of the number of particles, so it is not practical
for large systems like biomolecules. Instead, we use the L-BFGS algorithm of Nocedal [52, 53],
which approximates the inverse Hessian by a fixed number of corrections from previous steps.
This sliding-window technique is almost as efficient as the original method, but the memory re-
quirements are much lower - proportional to the number of particles multiplied with the correction
steps. In practice we have found it to converge faster than conjugate gradients, but due to the
correction steps it is not yet parallelized. It is also noteworthy that switched or shifted interactions
usually improve the convergence, since sharp cut-offs mean the potential function at the current
coordinates is slightly different from the previous steps used to build the inverse Hessian approxi-
mation.

3.11 Normal-Mode Analysis

Normal-mode analysis [54, 55, 56] can be performed using GROMACS, by diagonalization of the
mass-weighted Hessian H:

RTM™\2HM 2R = diag(\i,...,\sw) (3.126)
N = (27mw;)? (3.127)
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where M contains the atomic masses, R is a matrix that contains the eigenvectors as columns, A;
are the eigenvalues and w; are the corresponding frequencies.

First the Hessian matrix, which is a 3N x 3N matrix where IV is the number of atoms, needs to
be calculated:
9*v

H;; = o0z, (3.128)

where ; and x; denote the atomic x, y or z coordinates. In practice, this equation is not used, but
the Hessian is calculated numerically from the force as:

b, - Gt hey) fitx— hey) 5129

2h
i = _ov (3.130)
(%ci

where e; is the unit vector in direction j. It should be noted that for a usual normal-mode cal-
culation, it is necessary to completely minimize the energy prior to computation of the Hessian.
The tolerance required depends on the type of system, but a rough indication is 0.001 kJ mol~!.
Minimization should be done with conjugate gradients or L-BFGS in double precision.

A number of GROMACS programs are involved in these calculations. First, the energy should
be minimized using mdrun. Then, mdrun computes the Hessian. Note that for generating the
run input file, one should use the minimized conformation from the full precision trajectory file,
as the structure file is not accurate enough. gmx nmeig does the diagonalization and the sorting
of the normal modes according to their frequencies. Both mdrun and gmx nmeig should be
run in double precision. The normal modes can be analyzed with the program gmx anaeig.
Ensembles of structures at any temperature and for any subset of normal modes can be generated
with gmx nmens. An overview of normal-mode analysis and the related principal component
analysis (see sec. 8.11) can be found in [57].

3.12 Free energy calculations

3.12.1 Slow-growth methods

Free energy calculations can be performed in GROMACS using a number of methods, including
“slow-growth.” An example problem might be calculating the difference in free energy of binding
of an inhibitor I to an enzyme E and to a mutated enzyme E'. It is not feasible with computer sim-
ulations to perform a docking calculation for such a large complex, or even releasing the inhibitor
from the enzyme in a reasonable amount of computer time with reasonable accuracy. However, if
we consider the free energy cycle in Fig. 3.10A we can write:

AG; — AGy = AGs — AGy (3.131)

If we are interested in the left-hand term we can equally well compute the right-hand term.

If we want to compute the difference in free energy of binding of two inhibitors I and I’ to an
enzyme E (Fig. 3.10B) we can again use eqn. 3.131 to compute the desired property.
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Figure 3.10: Free energy cycles. A: to calculate AG9, the free energy difference between the
binding of inhibitor I to enzymes E respectively E’. B: to calculate AG12, the free energy differ-
ence for binding of inhibitors I respectively I’ to enzyme E.
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Free energy differences between two molecular species can be calculated in GROMACS using
the “slow-growth” method. Such free energy differences between different molecular species
are physically meaningless, but they can be used to obtain meaningful quantities employing a
thermodynamic cycle. The method requires a simulation during which the Hamiltonian of the
system changes slowly from that describing one system (A) to that describing the other system
(B). The change must be so slow that the system remains in equilibrium during the process; if that
requirement is fulfilled, the change is reversible and a slow-growth simulation from B to A will
yield the same results (but with a different sign) as a slow-growth simulation from A to B. This is
a useful check, but the user should be aware of the danger that equality of forward and backward
growth results does not guarantee correctness of the results.

The required modification of the Hamiltonian H is realized by making H a function of a coupling
parameter \ : H = H(p, q; \) in such a way that A = 0 describes system A and A = 1 describes
system B:

H(p,q;0) = H(p,q); H(p,q;1) = H®(p,q). (3.132)

In GROMACS, the functional form of the A-dependence is different for the various force-field
contributions and is described in section sec. 4.5.

The Helmholtz free energy A is related to the partition function @) of an IV, V, T ensemble, which
is assumed to be the equilibrium ensemble generated by a MD simulation at constant volume and
temperature. The generally more useful Gibbs free energy G is related to the partition function
A of an N, p, T ensemble, which is assumed to be the equilibrium ensemble generated by a MD
simulation at constant pressure and temperature:

A\ = —kpThhQ (3.133)
Q = c / / exp[—BH (p, ¢; \)] dp dg (3.134)
G(\) = —kpThhA (3.135)

A = of[[expl-sHp.aN) - BpV)dpdgdv (3.136)
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G = A+pV, (3.137)

where 8 = 1/(kgT) and ¢ = (N!h3"N)~1. These integrals over phase space cannot be evaluated
from a simulation, but it is possible to evaluate the derivative with respect to A as an ensemble
average:
dA _ [J(OH/OX) exp[—BH (p,q;A)dpdq _ <<‘9H> (3.138)
dA JJ exp[—=BH (p,q; )] dp dq N/ nvrn '
with a similar relation for dG/d\ in the N, p, T ensemble. The difference in free energy between
A and B can be found by integrating the derivative over \:

OH

1
AB(V,T) — ANV, T) = /o<fM>Nvm d\ (3.139)
1
GB(p,T) — G (p,T) = /O@IQN“M (3.140)
pL;

If one wishes to evaluate GB(p, T) — G*(p, T), the natural choice is a constant-pressure simu-
lation. However, this quantity can also be obtained from a slow-growth simulation at constant
volume, starting with system A at pressure p and volume V' and ending with system B at pressure
pB, by applying the following small (but, in principle, exact) correction:

pB

GB(p) — G*(p) = AB(V) — ANV — / VB —Vv]dy (3.141)

Here we omitted the constant 7" from the notation. This correction is roughly equal to —%(pB —

p)AV = (AV)?/(2kV), where AV is the volume change at p and & is the isothermal compress-
ibility. This is usually small; for example, the growth of a water molecule from nothing in a bath
of 1000 water molecules at constant volume would produce an additional pressure of as much as
22 bar, but a correction to the Helmholtz free energy of just -1 kJ mol .

In Cartesian coordinates, the kinetic energy term in the Hamiltonian depends only on the momenta,
and can be separately integrated and, in fact, removed from the equations. When masses do not
change, there is no contribution from the kinetic energy at all; otherwise the integrated contribution
to the free energy is — %k BT In(mPB/m™). Note that this is only true in the absence of constraints.

3.12.2 Thermodynamic integration

GROMACS offers the possibility to integrate eq. 3.139 or eq. 3.140 in one simulation over the
full range from A to B. However, if the change is large and insufficient sampling can be expected,
the user may prefer to determine the value of (dG/d\) accurately at a number of well-chosen
intermediate values of A. This can easily be done by setting the stepsize delta_lambda to zero.
Each simulation can be equilibrated first, and a proper error estimate can be made for each value of
dG /d\ from the fluctuation of 9H /O\. The total free energy change is then determined afterward
by an appropriate numerical integration procedure.

GROMACS now also supports the use of Bennett’s Acceptance Ratio [58] for calculating values of
AG for transformations from state A to state B using the program gmx bar. The same data can
also be used to calculate free energies using MBAR [59], though the analysis currently requires
external tools from the external pymbar package, at https://SimTK.org/home/pymbar.

The A-dependence for the force-field contributions is described in detail in section sec. 4.5.
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3.13 Replica exchange

Replica exchange molecular dynamics (REMD) is a method that can be used to speed up the sam-
pling of any type of simulation, especially if conformations are separated by relatively high energy
barriers. It involves simulating multiple replicas of the same system at different temperatures and
randomly exchanging the complete state of two replicas at regular intervals with the probability:

P(1 < 2) = min (l,exp KkBlTl — kBlTQ) Uy — Ug)]> (3.142)
where 77 and T5 are the reference temperatures and U; and U, are the instantaneous potential
energies of replicas 1 and 2 respectively. After exchange the velocities are scaled by (77 /T5)*%?
and a neighbor search is performed the next step. This combines the fast sampling and frequent
barrier-crossing of the highest temperature with correct Boltzmann sampling at all the different
temperatures [60, 61]. We only attempt exchanges for neighboring temperatures as the probability
decreases very rapidly with the temperature difference. One should not attempt exchanges for
all possible pairs in one step. If, for instance, replicas 1 and 2 would exchange, the chance of
exchange for replicas 2 and 3 not only depends on the energies of replicas 2 and 3, but also on the
energy of replica 1. In GROMACS this is solved by attempting exchange for all “odd” pairs on
“odd” attempts and for all “even” pairs on “even” attempts. If we have four replicas: 0, 1, 2 and 3,
ordered in temperature and we attempt exchange every 1000 steps, pairs 0-1 and 2-3 will be tried
at steps 1000, 3000 etc. and pair 1-2 at steps 2000, 4000 etc.

How should one choose the temperatures? The energy difference can be written as:
c
U — U, :Ndf§kB(T1 —Ty) (3.143)

where Ny is the total number of degrees of freedom of one replica and c is 1 for harmonic poten-
tials and around 2 for protein/water systems. If 75 = (1 + €)7T the probability becomes:

2¢ N,
P(1+4+2)=-exp (— € cdf ) ~ exp (—echdf> (3.144)

2(1+¢) 2

Thus for a probability of e 2 ~ 0.135 one obtains € ~ 2/ \/¢ Ngs. With all bonds constrained one
has Nyt =~ 2 Nytoms and thus for ¢ = 2 one should choose € as 1/ V' Natoms. However there is one
problem when using pressure coupling. The density at higher temperatures will decrease, leading
to higher energy [62], which should be taken into account. The GROMACS website features a so-
called “REMD calculator,” that lets you type in the temperature range and the number of atoms,
and based on that proposes a set of temperatures.

An extension to the REMD for the isobaric-isothermal ensemble was proposed by Okabe et
al. [63]. In this work the exchange probability is modified to:

. 1 1 P 1)
P e 2) =min (Lew | (om - o) -0+ (- ) - w))
(3.145)
where P, and P, are the respective reference pressures and 1/, and V5 are the respective instanta-
neous volumes in the simulations. In most cases the differences in volume are so small that the
second term is negligible. It only plays a role when the difference between P; and P is large or
in phase transitions.
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Hamiltonian replica exchange is also supported in GROMACS. In Hamiltonian replica exchange,
each replica has a different Hamiltonian, defined by the free energy pathway specified for the
simulation. The exchange probability to maintain the correct ensemble probabilities is:

1 1

P(1 < 2) = min <1,exp [(kT T
B B

> ((Ur(x2) — Ur(x1)) + (Ua(z1) — U2(:E2)))}>

(3.146)
The separate Hamiltonians are defined by the free energy functionality of GROMACS, with swaps
made between the different values of A defined in the mdp file.

Hamiltonian and temperature replica exchange can also be performed simultaneously, using the
acceptance criteria:

P(1 4 2) = min (1, exp K ) (Uile2) ~ Ur(a) | Un(an) — Un(a)

T + T )D (3.147)

Gibbs sampling replica exchange has also been implemented in GROMACS [64]. In Gibbs sam-
pling replica exchange, all possible pairs are tested for exchange, allowing swaps between replicas
that are not neighbors.

kT

Gibbs sampling replica exchange requires no additional potential energy calculations. However
there is an additional communication cost in Gibbs sampling replica exchange, as for some permu-
tations, more than one round of swaps must take place. In some cases, this extra communication
cost might affect the efficiency.

All replica exchange variants are options of the mdrun program. It will only work when MPI is
installed, due to the inherent parallelism in the algorithm. For efficiency each replica can run on a
separate rank. See the manual page of mdrun on how to use these multinode features.

3.14 Essential Dynamics sampling

The results from Essential Dynamics (see sec. 8.11) of a protein can be used to guide MD sim-
ulations. The idea is that from an initial MD simulation (or from other sources) a definition of
the collective fluctuations with largest amplitude is obtained. The position along one or more of
these collective modes can be constrained in a (second) MD simulation in a number of ways for
several purposes. For example, the position along a certain mode may be kept fixed to monitor
the average force (free-energy gradient) on that coordinate in that position. Another application
is to enhance sampling efficiency with respect to usual MD [65, 66]. In this case, the system is
encouraged to sample its available configuration space more systematically than in a diffusion-like
path that proteins usually take.

Another possibility to enhance sampling is flooding. Here a flooding potential is added to certain
(collective) degrees of freedom to expel the system out of a region of phase space [67].

The procedure for essential dynamics sampling or flooding is as follows. First, the eigenvectors
and eigenvalues need to be determined using covariance analysis (gmx covar) or normal-mode
analysis (gmx nmeigqg). Then, this information is fed into make_edi, which has many options
for selecting vectors and setting parameters, see gmx make_edi -—h. The generated edi input
file is then passed to mdrun.
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3.15 Expanded Ensemble

In an expanded ensemble simulation [68], both the coordinates and the thermodynamic ensemble
are treated as configuration variables that can be sampled over. The probability of any given state
can be written as:

P(fa k) X exp (_BkUk + gk) ) (3148)

where 5, = ﬁ is the 3 corresponding to the kth thermodynamic state, and gy, is a user-specified
weight factor corresponding to the kth state. This space is therefore a mixed, generalized, or
expanded ensemble which samples from multiple thermodynamic ensembles simultaneously. g
is chosen to give a specific weighting of each subensemble in the expanded ensemble, and can
either be fixed, or determined by an iterative procedure. The set of g; is frequently chosen to
give each thermodynamic ensemble equal probability, in which case gy, is equal to the free energy
in non-dimensional units, but they can be set to arbitrary values as desired. Several different
algorithms can be used to equilibrate these weights, described in the mdp option listings.

In GROMACS, this space is sampled by alternating sampling in the k& and % directions. Sampling
in the & direction is done by standard molecular dynamics sampling; sampling between the dif-
ferent thermodynamics states is done by Monte Carlo, with several different Monte Carlo moves
supported. The k states can be defined by different temperatures, or choices of the free energy
A variable, or both. Expanded ensemble simulations thus represent a serialization of the replica
exchange formalism, allowing a single simulation to explore many thermodynamic states.

3.16 Parallelization

The CPU time required for a simulation can be reduced by running the simulation in parallel over
more than one core. Ideally, one would want to have linear scaling: running on N cores makes
the simulation IV times faster. In practice this can only be achieved for a small number of cores.
The scaling will depend a lot on the algorithms used. Also, different algorithms can have different
restrictions on the interaction ranges between atoms.

3.17 Domain decomposition

Since most interactions in molecular simulations are local, domain decomposition is a natural way
to decompose the system. In domain decomposition, a spatial domain is assigned to each rank,
which will then integrate the equations of motion for the particles that currently reside in its local
domain. With domain decomposition, there are two choices that have to be made: the division of
the unit cell into domains and the assignment of the forces to domains. Most molecular simulation
packages use the half-shell method for assigning the forces. But there are two methods that always
require less communication: the eighth shell [69] and the midpoint [70] method. GROMACS
currently uses the eighth shell method, but for certain systems or hardware architectures it might
be advantageous to use the midpoint method. Therefore, we might implement the midpoint method
in the future. Most of the details of the domain decomposition can be found in the GROMACS 4

paper [5].
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\/

Figure 3.11: A non-staggered domain decomposition grid of 3x2x2 cells. Coordinates in zones
1 to 7 are communicated to the corner cell that has its home particles in zone 0. r. is the cut-off
radius.

3.17.1 Coordinate and force communication

In the most general case of a triclinic unit cell, the space in divided with a 1-, 2-, or 3-D grid in
parallelepipeds that we call domain decomposition cells. Each cell is assigned to a particle-particle
rank. The system is partitioned over the ranks at the beginning of each MD step in which neighbor
searching is performed. Since the neighbor searching is based on charge groups, charge groups
are also the units for the domain decomposition. Charge groups are assigned to the cell where
their center of geometry resides. Before the forces can be calculated, the coordinates from some
neighboring cells need to be communicated, and after the forces are calculated, the forces need
to be communicated in the other direction. The communication and force assignment is based on
zones that can cover one or multiple cells. An example of a zone setup is shown in Fig. 3.11.

The coordinates are communicated by moving data along the “negative” direction in z, y or 2
to the next neighbor. This can be done in one or multiple pulses. In Fig. 3.11 two pulses in x
are required, then one in y and then one in z. The forces are communicated by reversing this
procedure. See the GROMACS 4 paper [5] for details on determining which non-bonded and
bonded forces should be calculated on which rank.

3.17.2 Dynamic load balancing

When different ranks have a different computational load (load imbalance), all ranks will have to
wait for the one that takes the most time. One would like to avoid such a situation. Load imbalance
can occur due to four reasons:

e inhomogeneous particle distribution

e inhomogeneous interaction cost distribution (charged/uncharged, water/non-water due to
GROMACS water innerloops)
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Figure 3.12: The zones to communicate to the rank of zone 0, see the text for details. r. and r
are the non-bonded and bonded cut-off radii respectively, d is an example of a distance between
following, staggered boundaries of cells.

e statistical fluctuation (only with small particle numbers)

e differences in communication time, due to network topology and/or other jobs on the ma-
chine interfering with our communication

So we need a dynamic load balancing algorithm where the volume of each domain decomposition
cell can be adjusted independently. To achieve this, the 2- or 3-D domain decomposition grids
need to be staggered. Fig. 3.12 shows the most general case in 2-D. Due to the staggering, one
might require two distance checks for deciding if a charge group needs to be communicated: a
non-bonded distance and a bonded distance check.

By default, mdrun automatically turns on the dynamic load balancing during a simulation when
the total performance loss due to the force calculation imbalance is 2% or more. Note that the
reported force load imbalance numbers might be higher, since the force calculation is only part of
work that needs to be done during an integration step. The load imbalance is reported in the log
file at log output steps and when the —v option is used also on screen. The average load imbalance
and the total performance loss due to load imbalance are reported at the end of the log file.

There is one important parameter for the dynamic load balancing, which is the minimum allowed
scaling. By default, each dimension of the domain decomposition cell can scale down by at least
a factor of 0.8. For 3-D domain decomposition this allows cells to change their volume by about a
factor of 0.5, which should allow for compensation of a load imbalance of 100%. The minimum
allowed scaling can be changed with the —~dds option of mdrun.

The load imbalance is measured by timing a single region of the MD step on each MPI rank. This
region can not include MPI communication, as timing of MPI calls does not allow separating wait
due to imbalance from actual communication. The domain volumes are then scaled, with under-
relaxation, inversely proportional with the measured time. This procedure will decrease the load
imbalance when the change in load in the measured region correlates with the change in domain
volume and the load outside the measured region does not depend strongly on the domain volume.
In CPU-only simulations, the load is measured between the coordinate and the force communica-
tion. In simulations with non-bonded work on GPUs, we overlap communication and work on the
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interaction range ‘ option default
non-bonded Te = Max(Mist,"Vdw,"Coul) | mdp file
two-body bonded max(rmp,re) mdrun —-rdd starting conf. + 10%
multi-body bonded Tmb mdrun -rdd  starting conf. + 10%
constraints Teon mdrun -rcon est. from bond lengths
virtual sites Tcon mdrun -rcon 0

Table 3.2: The interaction ranges with domain decomposition.

CPU with calculation on the GPU. Therefore we measure from the last communication before the
force calculation to when the CPU or GPU is finished, whichever is last. When not using PME
ranks, we subtract the time in PME from the CPU time, as this includes MPI calls and the PME
load is independent of domain size. This generally works well, unless the non-bonded load is
low and there is imbalance in the bonded interactions. Then two issues can arise. Dynamic load
balancing can increase the imbalance in update and constraints and with PME the coordinate and
force redistribution time can go up significantly. Although dynamic load balancing can signifi-
cantly improve performance in cases where there is imbalance in the bonded interactions on the
CPU, there are many situations in which some domains continue decreasing in size and the load
imbalance increases and/or PME coordinate and force redistribution cost increases significantly.
As of version 2016.1, mdrun disables the dynamic load balancing when measurement indicates
that it deteriorates performance. This means that in most cases the user will get good performance
with the default, automated dynamic load balancing setting.

3.17.3 Constraints in parallel

Since with domain decomposition parts of molecules can reside on different ranks, bond con-
straints can cross cell boundaries. Therefore a parallel constraint algorithm is required. GRO-
MACS uses the P-LINCS algorithm [50], which is the parallel version of the LINCS algorithm [49]
(see 3.6.2). The P-LINCS procedure is illustrated in Fig. 3.13. When molecules cross the cell
boundaries, atoms in such molecules up to (1incs_order + 1) bonds away are communi-
cated over the cell boundaries. Then, the normal LINCS algorithm can be applied to the local
bonds plus the communicated ones. After this procedure, the local bonds are correctly constrained,
even though the extra communicated ones are not. One coordinate communication step is required
for the initial LINCS step and one for each iteration. Forces do not need to be communicated.

3.17.4 Interaction ranges

Domain decomposition takes advantage of the locality of interactions. This means that there will
be limitations on the range of interactions. By default, mdrun tries to find the optimal balance
between interaction range and efficiency. But it can happen that a simulation stops with an error
message about missing interactions, or that a simulation might run slightly faster with shorter
interaction ranges. A list of interaction ranges and their default values is given in Table 3.2.

In most cases the defaults of mdrun should not cause the simulation to stop with an error message
of missing interactions. The range for the bonded interactions is determined from the distance be-
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Figure 3.13: Example of the parallel setup of P-LINCS with one molecule split over three do-
main decomposition cells, using a matrix expansion order of 3. The top part shows which atom
coordinates need to be communicated to which cells. The bottom parts show the local constraints
(solid) and the non-local constraints (dashed) for each of the three cells.

tween bonded charge-groups in the starting configuration, with 10% added for headroom. For the
constraints, the value of 7, is determined by taking the maximum distance that (1incs_order
+ 1) bonds can cover when they all connect at angles of 120 degrees. The actual constraint com-
munication is not limited by 7oy, but by the minimum cell size L, which has the following lower
limit:

Le > max(rmp, Teon) (3.149)

Without dynamic load balancing the system is actually allowed to scale beyond this limit when
pressure scaling is used. Note that for triclinic boxes, L is not simply the box diagonal compo-
nent divided by the number of cells in that direction, rather it is the shortest distance between the
triclinic cells borders. For rhombic dodecahedra this is a factor of 1/3/2 shorter along = and .

When r,, > 7., mdrun employs a smart algorithm to reduce the communication. Simply
communicating all charge groups within r,,;, would increase the amount of communication enor-
mously. Therefore only charge-groups that are connected by bonded interactions to charge groups
which are not locally present are communicated. This leads to little extra communication, but also
to a slightly increased cost for the domain decomposition setup. In some cases, e.g. coarse-grained
simulations with a very short cut-off, one might want to set 7, by hand to reduce this cost.

3.17.5 Multiple-Program, Multiple-Data PME parallelization

Electrostatics interactions are long-range, therefore special algorithms are used to avoid summa-
tion over many atom pairs. In GROMACS this is usually PME (sec. 4.8.2). Since with PME all
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8 PP/PME ranks 6 PP ranks 2 PME ranks
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Figure 3.14: Example of 8 ranks without (left) and with (right) MPMD. The PME communication
(red arrows) is much higher on the left than on the right. For MPMD additional PP - PME coordi-
nate and force communication (blue arrows) is required, but the total communication complexity
is lower.

particles interact with each other, global communication is required. This will usually be the lim-
iting factor for scaling with domain decomposition. To reduce the effect of this problem, we have
come up with a Multiple-Program, Multiple-Data approach [5]. Here, some ranks are selected to
do only the PME mesh calculation, while the other ranks, called particle-particle (PP) ranks, do
all the rest of the work. For rectangular boxes the optimal PP to PME rank ratio is usually 3:1,
for rhombic dodecahedra usually 2:1. When the number of PME ranks is reduced by a factor of
4, the number of communication calls is reduced by about a factor of 16. Or put differently, we
can now scale to 4 times more ranks. In addition, for modern 4 or 8 core machines in a network,
the effective network bandwidth for PME is quadrupled, since only a quarter of the cores will be
using the network connection on each machine during the PME calculations.

mdrun will by default interleave the PP and PME ranks. If the ranks are not number consecutively
inside the machines, one might want to use mdrun -ddorder pp_pme. For machines with a
real 3-D torus and proper communication software that assigns the ranks accordingly one should
use mdrun -ddorder cartesian.

To optimize the performance one should usually set up the cut-offs and the PME grid such that
the PME load is 25 to 33% of the total calculation load. grompp will print an estimate for this
load at the end and also mdrun calculates the same estimate to determine the optimal number
of PME ranks to use. For high parallelization it might be worthwhile to optimize the PME load
with the mdp settings and/or the number of PME ranks with the —npme option of mdrun. For
changing the electrostatics settings it is useful to know the accuracy of the electrostatics remains
nearly constant when the Coulomb cut-off and the PME grid spacing are scaled by the same factor.
Note that it is usually better to overestimate than to underestimate the number of PME ranks, since
the number of PME ranks is smaller than the number of PP ranks, which leads to less total waiting
time.

The PME domain decomposition can be 1-D or 2-D along the x and/or y axis. 2-D decomposition
is also known as pencil decomposition because of the shape of the domains at high parallelization.
1-D decomposition along the y axis can only be used when the PP decomposition has only 1 do-
main along z. 2-D PME decomposition has to have the number of domains along z equal to the
number of the PP decomposition. mdrun automatically chooses 1-D or 2-D PME decomposition
(when possible with the total given number of ranks), based on the minimum amount of commu-
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nication for the coordinate redistribution in PME plus the communication for the grid overlap and
transposes. To avoid superfluous communication of coordinates and forces between the PP and
PME ranks, the number of DD cells in the x direction should ideally be the same or a multiple of
the number of PME ranks. By default, ndrun takes care of this issue.

3.17.6 Domain decomposition flow chart

In Fig. 3.15 a flow chart is shown for domain decomposition with all possible communication for
different algorithms. For simpler simulations, the same flow chart applies, without the algorithms
and communication for the algorithms that are not used.

3.18 Implicit solvation

Implicit solvent models provide an efficient way of representing the electrostatic effects of solvent
molecules, while saving a large piece of the computations involved in an accurate, aqueous de-
scription of the surrounding water in molecular dynamics simulations. Implicit solvation models
offer several advantages compared with explicit solvation, including eliminating the need for the
equilibration of water around the solute, and the absence of viscosity, which allows the protein to
more quickly explore conformational space.

Implicit solvent calculations in GROMACS can be done using the generalized Born-formalism,
and the Still [71], HCT [72], and OBC [73] models are available for calculating the Born radii.

Here, the free energy G,y of solvation is the sum of three terms, a solvent-solvent cavity term
(Gcav), a solute-solvent van der Waals term (Gqw), and finally a solvent-solute electrostatics
polarization term (G'po1).

The sum of G,y and G4y corresponds to the (non-polar) free energy of solvation for a molecule
from which all charges have been removed, and is commonly called Gy, calculated from the
total solvent accessible surface area multiplied with a surface tension. The total expression for the
solvation free energy then becomes:

Gsolv = an + Gpol (3150)

Under the generalized Born model, G, is calculated from the generalized Born equation [71]:

Giol = (1 . 6) » 4i4; 2 (3.151)
i=1 j>i Ty
j> \/r% + bib; exp <4bibjj>

In GROMACS, we have introduced the substitution [74]:

(3.152)

which makes it possible to introduce a cheap transformation to a new variable x when evaluating
each interaction, such that:
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Figure 3.15: Flow chart showing the algorithms and communication (arrows) for a standard MD
simulation with virtual sites, constraints and separate PME-mesh ranks.
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-
T = zjjbj = 7ijCiC; (3.153)

In the end, the full re-formulation of 3.151 becomes:

Gool = ( ) Y \%’Lb = ( = ) quc,Zq]c] (3.154)

=1 j3>1 >t

The non-polar part (G,,) of Equation 3.150 is calculated directly from the Born radius of each
atom using a simple ACE type approximation by Schaefer et al. [75], including a simple loop
over all atoms. This requires only one extra solvation parameter, independent of atom type, but
differing slightly between the three Born radii models.
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Chapter 4

Interaction function and force
fields

To accommodate the potential functions used in some popular force fields (see 4.10), GROMACS
offers a choice of functions, both for non-bonded interaction and for dihedral interactions. They
are described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modified Coulomb. The non-
bonded interactions are computed on the basis of a neighbor list (a list of non-bonded atoms
within a certain radius), in which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals.
These are computed on the basis of fixed lists.

3. Restraints: position restraints, angle restraints, distance restraints, orientation restraints and
dihedral restraints, all based on fixed lists.

4. Applied Forces: externally applied forces, see chapter 6.

4.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive:

Viry,...rn) =Y Vij(rij); 4.1)
1<j
dVij(ri;) ri;
F,=-) 4949 4.2
Z d?“z'j ’I”ij ( )

J
Since the potential only depends on the scalar distance, interactions will be centro-symmetric,
i.e. the vectorial partial force on particle 7 from the pairwise interaction V;(r;;) has the opposite
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Figure 4.1: The Lennard-Jones interaction.

direction of the partial force on particle j. For efficiency reasons, interactions are calculated
by loops over interactions and updating both partial forces rather than summing one complete
nonbonded force at a time. The non-bonded interactions contain a repulsion term, a dispersion
term, and a Coulomb term. The repulsion and dispersion term are combined in either the Lennard-
Jones (or 6-12 interaction), or the Buckingham (or exp-6 potential). In addition, (partially) charged
atoms act through the Coulomb term.

4.1.1 The Lennard-Jones interaction

The Lennard-Jones potential V7, ; between two atoms equals:

c?  c®
=4 4.
VLJ(T’LJ> ’I"ile T?j ( 3)

See also Fig. 4.1 The parameters 01(]12) and CZ-(;-S ) depend on pairs of atom types; consequently they
are taken from a matrix of LJ-parameters. In the Verlet cut-off scheme, the potential is shifted by
a constant such that it is zero at the cut-off distance.

The force derived from this potential is:

(12) ©) ,.
Fi(""ij) = 12 2{3 —6 17] —L (44)

Tij ii ) Tij

The LJ potential may also be written in the following form:

Vi (rij) = 4e;j ((5) — <rj> ) (4.5)

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of combination
rules can be used within GROMACS, only geometric averages (type 1 in the input section of the
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Figure 4.2: The Buckingham interaction.

force-field ﬁle):

(12) (12) ~(12))1/2
Gy~ = (Cn‘ Cjj )

(4.6)

or, alternatively the Lorentz-Berthelot rules can be used. An arithmetic average is used to calculate
0;j, while a geometric average is used to calculate €;; (type 2):

o= L5 .
7 Aty @)
€j = (€ii€j)
finally an geometric average for both parameters can be used (type 3):

1/2
P

oij = (0i0jj

€ = (€iej)

(4.8)
This last rule is used by the OPLS force field.

4.1.2 Buckingham potential

The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones
interaction, but is also more expensive to compute. The potential form is:

CA .
V})h(rij) = Aij eXp(—BZ‘jT’ij) — Tié (4.9)
]
See also Fig. 4.2. The force derived from this is:
Cij m

Fi(rij) = AijBij eXp(—BijT‘Z'j) - 67 (410)

ij | Tij
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Figure 4.3: The Coulomb interaction (for particles with equal signed charge) with and without
reaction field. In the latter case €, was 1, €,y was 78, and r. was 0.9 nm. The dot-dashed line is
the same as the dashed line, except for a constant.

4.1.3 Coulomb interaction

The Coulomb interaction between two charge particles is given by:

Vo(ry) = f14 (4.11)

57'741']'

See also Fig. 4.3, where f = ﬁ = 138.935 458 (see chapter 2)

The force derived from this potential is:

o
Fi(rij)=f qzq% — 4.12)

A plain Coulomb interaction should only be used without cut-off or when all pairs fall within the
cut-off, since there is an abrupt, large change in the force at the cut-off. In case you do want to use
a cut-off, the potential can be shifted by a constant to make the potential the integral of the force.
With the group cut-off scheme, this shift is only applied to non-excluded pairs. With the Verlet
cut-off scheme, the shift is also applied to excluded pairs and self interactions, which makes the
potential equivalent to a reaction field with &,y = 1 (see below).

In GROMACS the relative dielectric constant €, may be set in the in the input for grompp.
4.1.4 Coulomb interaction with reaction field
The Coulomb interaction can be modified for homogeneous systems by assuming a constant di-

electric environment beyond the cut-off r. with a dielectric constant of ¢, y. The interaction then
reads:

3
qi4; Erf —&r Tij Qg 3erg
Virp = 1 A - L - 4.13

erf fsrmj [ + 2e,f + & 7"2] fsﬂ“c 2e,f + &y (4.13)
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in which the constant expression on the right makes the potential zero at the cut-off .. For charged
cut-off spheres this corresponds to neutralization with a homogeneous background charge. We can
rewrite eqn. 4.13 for simplicity as

qq; | 1
Vg = 754 [ bk —crf] @14
with
1 &yf—er

k - = 4.15
rf r3 (2erf +er) 4.15)

1 1 3e
= —dkgrt= — 4.16
C’I”f Te + rf rc r. (2€rf +67’) ( )

For large ¢, the ks goes to r;3/2, while for €,¢ = ¢, the correction vanishes. In Fig. 4.3 the
modified interaction is plotted, and it is clear that the derivative with respect to r;; (= -force) goes
to zero at the cut-off distance. The force derived from this potential reads:

.- 1 T

Fz’('rij) = szQJ [2 — QkaTij‘| A (417)
ro LT T'ij

The reaction-field correction should also be applied to all excluded atoms pairs, including self

pairs, in which case the normal Coulomb term in eqns. 4.13 and 4.17 is absent.

Tironi et al. have introduced a generalized reaction field in which the dielectric continuum beyond
the cut-off r. also has an ionic strength I [76]. In this case we can rewrite the constants k. and
crr using the inverse Debye screening length «:

2 2F?  F?
Soé}fRT N 505rfRTZ-

by = L Eze)(tar + 2ery (k) (4.19)
13 (26,5 + 7)1+ kre) +erp(kre)?

. 1 3erf(1+ kre + 3(kre)?) 420)
v/ re (267f +er)(1 4 kre) + e p(Kre)? '

K
ciz? (4.18)
=1

where F' is Faraday’s constant, R is the ideal gas constant, 7' the absolute temperature, c¢; the
molar concentration for species ¢ and z; the charge number of species ¢ where we have K different
species. In the limit of zero ionic strength (x = 0) eqns. 4.19 and 4.20 reduce to the simple forms
of eqns. 4.15 and 4.16 respectively.

4.1.5 Modified non-bonded interactions

In GROMACS, the non-bonded potentials can be modified by a shift function, also called a force-
switch function, since it switches the force to zero at the cut-off. The purpose of this is to replace
the truncated forces by forces that are continuous and have continuous derivatives at the cut-off
radius. With such forces the time integration produces smaller errors. But note that for Lennard-
Jones interactions these errors are usually smaller than other errors, such as integration errors at
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the repulsive part of the potential. For Coulomb interactions we advise against using a shifted
potential and for use of a reaction field or a proper long-range method such as PME.

There is no fundamental difference between a switch function (which multiplies the potential with
a function) and a shift function (which adds a function to the force or potential) [77]. The switch
function is a special case of the shift function, which we apply to the force function F(r), related
to the electrostatic or van der Waals force acting on particle ¢ by particle j as:

F; = cF(ry)—2 “21)

Tij

For pure Coulomb or Lennard-Jones interactions F'(1) = F,(r) = ar~(@*+1)_ The switched force
Fs(r) can generally be written as:

Fy(r) = Fu(r) r<r
Fi(r) = Fo(r)+S(r) m<r<r. (4.22)
Fy(r) = 0 re <71

When 1 = 0 this is a traditional shift function, otherwise it acts as a switch function. The
corresponding shifted potential function then reads:

Vi(r) = / Y Fy(x)da 4.23)

The GROMACS force switch function Sp(r) should be smooth at the boundaries, therefore the
following boundary conditions are imposed on the switch function:

Sfr(m) =0
S = “rged 420
Sp(re) = —Fl(re)
A 37? degree polynomial of the form
Sp(r)=A(r —r)*+ B(r —r)3 (4.25)

fulfills these requirements. The constants A and B are given by the boundary condition at r.:

(a+4)r. — (a+1)r

A =
e (re —m)? (4.26)
B — (a+3)re — (a+1)r '
- a+2 _ 3
re S (re —11)
Thus the total force function is:
_« Y .3
Fy(r) = pres) + A(r —r1)* + B(r —r1) 4.27)
and the potential function reads:
1 A B
VS(T):T—a—g(r—rl)?’—z(r—rl)‘l—C’ (4.28)
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where

(4.29)

The GROMACS potential-switch function Sy (r) scales the potential between 1 and r., and has
similar boundary conditions, intended to produce smoothly-varying potential and forces:

(4.30)

<

A~ N N TN N
=

— — N N
[Tl

SO OO O

The fifth-degree polynomial that has these properties is

1—10(r —7r1)3(re — )% + 15(r — r1)*(re — r1) — 6(r —11)
(re —r1)®

Sy (r;ri,re) = (4.31)

This implementation is found in several other simulation packages,[78, 79, 80] but differs from
that in CHARMM.[81] Switching the potential leads to artificially large forces in the switching
region, therefore it is not recommended to switch Coulomb interactions using this function,[77]
but switching Lennard-Jones interactions using this function produces acceptable results.

4.1.6 Modified short-range interactions with Ewald summation

When Ewald summation or particle-mesh Ewald is used to calculate the long-range interactions,
the short-range Coulomb potential must also be modified. Here the potential is switched to (nearly)
zero at the cut-off, instead of the force. In this case the short range potential is given by:

V() = pOma) (4.32)

Tij

where (5 is a parameter that determines the relative weight between the direct space sum and the
reciprocal space sum and erfc(z) is the complementary error function. For further details on long-
range electrostatics, see sec. 4.8.

4.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interac-
tions, but include 3- and 4-body interactions as well. There are bond stretching (2-body), bond
angle (3-body), and dihedral angle (4-body) interactions. A special type of dihedral interaction
(called improper dihedral) is used to force atoms to remain in a plane or to prevent transition to a
configuration of opposite chirality (a mirror image).
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Figure 4.4: Principle of bond stretching (left), and the bond stretching potential (right).

4.2.1 Bond stretching
Harmonic potential

The bond stretching between two covalently bonded atoms ¢ and j is represented by a harmonic
potential:

1
Vi (rij) = ikfj(rij — bij)? (4.33)

See also Flg 4.4, with the force given by
b Tij
F,; ('rij) — kij(ri . bl])

ij

(4.34)

Fourth power potential

In the GROMOS-96 force field [82], the covalent bond potential is, for reasons of computational
efficiency, written as:

1 2
ACHES A GRS (4.35)
The corresponding force is:

Fi(rij) = kij(r; — b) 74 (4.36)

The force constants for this form of the potential are related to the usual harmonic force constant
Ebharm (gec 4.2.1) as
2k°b7; = kb (4.37)

The force constants are mostly derived from the harmonic ones used in GROMOS-87 [83]. Al-
though this form is computationally more efficient (because no square root has to be evaluated), it
is conceptually more complex. One particular disadvantage is that since the form is not harmonic,
the average energy of a single bond is not equal to %/{:T as it is for the normal harmonic potential.
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4.2.2 Morse potential bond stretching

For some systems that require an anharmonic bond stretching potential, the Morse potential [84]
between two atoms i and j is available in GROMACS. This potential differs from the harmonic
potential in that it has an asymmetric potential well and a zero force at infinite distance. The
functional form is:

Vinorse(rij) = Dij[1 — exp(—Bij(ri; — bij))]%, (4.38)

See also Fig. 4.5, and the corresponding force is:

Friorse(rij) = 2D;jfBij exp(—PBij(ri; — bij))*
4.
[1 — exp(—Bij(rij — bij))]%, (4.39)

where D;; is the depth of the well in kJ/mol, 3;; defines the steepness of the well (in nm~ 1), and
b;; is the equilibrium distance in nm. The steepness parameter [3;; can be expressed in terms of
the reduced mass of the atoms i and j, the fundamental vibration frequency w;; and the well depth

Dz’j:
e
Bij = wij, | 5 l;]ij (4.40)

and because w = y/k/ 1, one can rewrite (3;; in terms of the harmonic force constant k;:

Bij = 2Dy,

4.41)

For small deviations (r;; — b;;), one can approximate the exp-term to first-order using a Taylor
expansion:
exp(—z)~1—=x (4.42)

and substituting eqn. 4.41 and eqn. 4.42 in the functional form:

Vinorse(rij) = Dij[1 — exp(—Bi; (rij — bij))]?
= Dyll— (1= /55 (s = big) ) (443)

= ghij(rij — big))?

we recover the harmonic bond stretching potential.

4.2.3 Cubic bond stretching potential

Another anharmonic bond stretching potential that is slightly simpler than the Morse potential
adds a cubic term in the distance to the simple harmonic form:

Vo (rig) = ki (rig — big)® + KLk50 (rig — big)? (4.44)

A flexible water model (based on the SPC water model [85]) including a cubic bond stretching
potential for the O-H bond was developed by Ferguson [86]. This model was found to yield a
reasonable infrared spectrum. The Ferguson water model is available in the GROMACS library
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Figure 4.5: The Morse potential well, with bond length 0.15 nm.

(flexwat-ferguson.itp). It should be noted that the potential is asymmetric: overstretching
leads to infinitely low energies. The integration timestep is therefore limited to 1 fs.

The force corresponding to this potential is:

i i
Fi(rij) = 2]{,‘%(7"1']' - bU) 7‘7” + 3k'gkffb(7‘w - bij)2 ’I“i (445)
i v

4.2.4 FENE bond stretching potential

In coarse-grained polymer simulations the beads are often connected by a FENE (finitely extensi-
ble nonlinear elastic) potential [87]:

L.y 7’1'2‘
VFENE(TU) = _ikijbij log ( — bQJ> (4.46)
ij

The potential looks complicated, but the expression for the force is simpler:

—1
b r
FRENE(ris) = —kij (1= 57 ) 73 (4.47)
ij

At short distances the potential asymptotically goes to a harmonic potential with force constant
kP, while it diverges at distance b.

4.2.5 Harmonic angle potential

The bond-angle vibration between a triplet of atoms ¢ - j - k is also represented by a harmonic
potential on the angle 0,

1
Va(Oijr) = 5/<;fjk(aijk - Q%k)2 (4.48)
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Figure 4.6: Principle of angle vibration (left) and the bond angle potential (right).

As the bond-angle vibration is represented by a harmonic potential, the form is the same as the
bond stretching (Fig. 4.4).

The force equations are given by the chain rule:

F; = _dVa(Hijk:)
dr (rij - Tkj)

P dVa(bijr)  where 0;jx = arccos ~————= (4.49)
T

F; = —-F;—Fy,

The numbering i, j, k is in sequence of covalently bonded atoms. Atom j is in the middle; atoms
7 and k are at the ends (see Fig. 4.6). Note that in the input in topology files, angles are given in
degrees and force constants in kJ/mol/rad?.

4.2.6 Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

1 2
Va(Oijk) = ikfjk (cos(&ijk) - cos(H%k)) (4.50)
where S
cos(Bjp) = —L—H 4.51)
TijTky

The corresponding force can be derived by partial differentiation with respect to the atomic posi-
tions. The force constants in this function are related to the force constants in the harmonic form
kO-harm (4 2 5) by:

K sin?(07,) = k¥ harm (4.52)

In the GROMOS-96 manual there is a much more complicated conversion formula which is tem-
perature dependent. The formulas are equivalent at 0 K and the differences at 300 K are on the
order of 0.1 to 0.2%. Note that in the input in topology files, angles are given in degrees and force
constants in kJ/mol.
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Figure 4.7: Bending angle potentials: cosine harmonic (solid black line), angle harmonic (dashed
black line) and restricted bending (red) with the same bending constant ky = 85 kJ mol~! and
equilibrium angle 6y = 130°. The orange line represents the sum of a cosine harmonic (k = 50
kJ mol~1!) with a restricted bending (k = 25 kJ mol~!) potential, both with #y = 130°.

4.2.7 Restricted bending potential

The restricted bending (ReB) potential [88] prevents the bending angle 6 from reaching the 180°
value. In this way, the numerical instabilities due to the calculation of the torsion angle and
potential are eliminated when performing coarse-grained molecular dynamics simulations.

To systematically hinder the bending angles from reaching the 180° value, the bending potential
4.50 is divided by a sin? 6 factor:

(cos B; — cos bp)?

1
Vren(0;) = ng (4.53)

sin2 91
Figure Fig. 4.7 shows the comparison between the ReB potential, 4.53, and the standard one 4.50.
The wall of the ReB potential is very repulsive in the region close to 180° and, as a result, the
bending angles are kept within a safe interval, far from instabilities. The power 2 of sin #; in the
denominator has been chosen to guarantee this behavior and allows an elegant differentiation:

0 cos b;
or,

2k
i(cos 0; — cosBy)(1 — cos b; cos b)

Fren(0) = 7 (4.54)

Due to its construction, the restricted bending potential cannot be used for equilibrium 6y values
too close to 0° or 180° (from experience, at least 10° difference is recommended). It is very
important that, in the starting configuration, all the bending angles have to be in the safe interval
to avoid initial instabilities. This bending potential can be used in combination with any form
of torsion potential. It will always prevent three consecutive particles from becoming collinear
and, as a result, any torsion potential will remain free of singularities. It can be also added to a
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standard bending potential to affect the angle around 180°, but to keep its original form around the
minimum (see the orange curve in Fig. 4.7).

4.2.8 Urey-Bradley potential

The Urey-Bradley bond-angle vibration between a triplet of atoms ¢ - j - k is represented by a
harmonic potential on the angle 6;;; and a harmonic correction term on the distance between the
atoms ¢ and k. Although this can be easily written as a simple sum of two terms, it is convenient
to have it as a single entry in the topology file and in the output as a separate energy term. It is
used mainly in the CHARMm force field [89]. The energy is given by:

1 1
V(1) = ikfjk(eﬁk — Op) + ngf(m —r9)? (4.55)

The force equations can be deduced from sections 4.2.1 and 4.2.5.

4.2.9 Bond-Bond cross term

The bond-bond cross term for three particles ¢, j, k forming bonds ¢ — j and k — j is given by [90]:
V;"r’ = krr’ (’Tz - Tj‘ - rle) (|’I°k - 'rj’ - T2e> (456)

where k.., is the force constant, and r1. and 79, are the equilibrium bond lengths of the 7 — j and
k — j bonds respectively. The force associated with this potential on particle i is:

’I"z‘—’l’j

Fz’ = —kwl (‘Tk — ’l“j| — ?”26) ‘ (4.57)

i = 7jl
The force on atom k can be obtained by swapping ¢ and k& in the above equation. Finally, the force
on atom j follows from the fact that the sum of internal forces should be zero: F'; = —F; — F'..

4.2.10 Bond-Angle cross term

The bond-angle cross term for three particles i, j, k forming bonds ¢ — j and k£ — j is given by [90]:
Vio = kro (Iri — ri|l — r3e) (Iri — 75 — r1e + [re — 7] — 72c) (4.58)

where k¢ is the force constant, 73, is the ¢+ — k distance, and the other constants are the same as
in Equation 4.56. The force associated with the potential on atom ¢ is:

T —T; i — T
F, = —k,. (|7'Z — rk] — 7‘3@) ”I“Z — 'I’]| + (|’I’1 — rj\ — T1e + ”I‘k — rj\ — 7“2@) m
7 ki 7
4.59)

4.2.11 Quartic angle potential

For special purposes there is an angle potential that uses a fourth order polynomial:

5
Va(Oiji) = > Cn(Biji — egjk)" (4.60)
n=0
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Figure 4.8: Principle of improper dihedral angles. Out of plane bending for rings (left), sub-
stituents of rings (middle), out of tetrahedral (right). The improper dihedral angle £ is defined as

the angle between planes (i,j,k) and (j,k,1) in all cases.

V; (kJ mol™)

Figure 4.9: Improper dihedral potential.

4.2.12 Improper dihedrals

Improper dihedrals are meant to keep planar groups (e.g. aromatic rings) planar, or to prevent
molecules from flipping over to their mirror images, see Fig. 4.8.

Improper dihedrals: harmonic type

The simplest improper dihedral potential is a harmonic potential; it is plotted in Fig. 4.9.

1
Via(&ijm) = §k£(§ijkl — &)? 4.61)

Since the potential is harmonic it is discontinuous, but since the discontinuity is chosen at 180°
distance from &q this will never cause problems. Note that in the input in topology files, angles are
given in degrees and force constants in kJ/mol/rad?.
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Figure 4.10: Principle of proper dihedral angle (left, in trans form) and the dihedral angle potential
(right).

Improper dihedrals: periodic type

This potential is identical to the periodic proper dihedral (see below). There is a separate dihedral
type for this (type 4) only to be able to distinguish improper from proper dihedrals in the parameter
section and the output.

4.2.13 Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic function or a
function based on expansion in powers of cos ¢ (the so-called Ryckaert-Bellemans potential). This
choice has consequences for the inclusion of special interactions between the first and the fourth
atom of the dihedral quadruple. With the periodic GROMOS potential a special 1-4 LJ-interaction
must be included; with the Ryckaert-Bellemans potential for alkanes the 1-4 interactions must be
excluded from the non-bonded list. Note: Ryckaert-Bellemans potentials are also used in e.g. the
OPLS force field in combination with 1-4 interactions. You should therefore not modify topologies
generated by pdb2gmx in this case.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the IUPAC/IUB convention, where ¢ is the angle
between the ¢jk and the jkl planes, with zero corresponding to the cis configuration (¢ and [ on
the same side). There are two dihedral function types in GROMACS topology files. There is the
standard type 1 which behaves like any other bonded interactions. For certain force fields, type 9 is
useful. Type 9 allows multiple potential functions to be applied automatically to a single dihedral
inthe [ dihedral ] section when multiple parameters are defined for the same atomtypes in
the [ dihedraltypes ] section.

Vd(ﬁbijkl) = /{3¢(1 + COS(TL(;5 — qbs)) (4.62)
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Co 928 | Cy -13.12 | Cy 2624
Cp 1216 | C3  -3.06 | C5 -31.5

Table 4.1: Constants for Ryckaert-Bellemans potential (kJ mol™!).
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Figure 4.11: Ryckaert-Bellemans dihedral potential.

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 4.11):

5

Vio(@irt) = Y, Cn(cos(y))", (4.63)

n=0

where 1) = ¢ — 180°.

Note: A conversion from one convention to another can be achieved by multiplying every coeffi-
cient C, by (—1)".

An example of constants for C is given in Table 4.1.

(Note: The use of this potential implies exclusion of LJ interactions between the first and the last
atom of the dihedral, and ¢ is defined according to the “polymer convention” (yqns = 0).)

The RB dihedral function can also be used to include Fourier dihedrals (see below):

Vio(Giji) = % [F1(1 + cos(¢)) + Fa(1 — cos(2¢)) + F3(1 + cos(3¢)) + Fu(1 — cos(49))]
(4.64)

Because of the equalities cos(2¢) = 2 cos?(¢) —1, cos(3¢) = 4 cos®(¢) —3 cos(¢) and cos(4¢p) =
8 cos*(¢) — 8 cos?(¢) + 1 one can translate the OPLS parameters to Ryckaert-Bellemans param-
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eters as follows:
Co = B+ 3B+ F)

Chp = %(—Fl + 3F3)

Co = —Fh+4F,

O, = _9F (4.65)
Cy = —4Fy

Cs = 0

with OPLS parameters in protein convention and RB parameters in polymer convention (this yields
a minus sign for the odd powers of cos(¢)).

Note: Mind the conversion from kcal mol~! for literature OPLS and RB parameters to kJ mol~!
in GROMACS.

Proper dihedrals: Fourier function

The OPLS potential function is given as the first three [91] or four [92] cosine terms of a Fourier
series. In GROMACS the four term function is implemented:

Vie(biu) = 5 [C1(1 4+ cos(9)) + Oa(1 — cos(26)) + C(1 + cos(36)) + Ca(1 — cos(4))]

(4.66)
Internally, GROMACS uses the Ryckaert-Bellemans code to compute Fourier dihedrals (see above),
because this is more efficient.

Note: Mind the conversion from kcal mol~" for literature OPLS parameters to kJ mol~! in GRO-
MACS.

Proper dihedrals: Restricted torsion potential

In a manner very similar to the restricted bending potential (see 4.2.7), a restricted torsion/dihedral
potential is introduced:

o 2
Vier(61) = 1 k (cos ¢;in2 C(;S o)

2

with the advantages of being a function of cos ¢ (no problems taking the derivative of sin ¢) and
of keeping the torsion angle at only one minimum value. In this case, the factor sin? ¢ does not
allow the dihedral angle to move from the [—180°:0] to [0:180°] interval, i.e. it cannot have
maxima both at —¢y and +¢¢ maxima, but only one of them. For this reason, all the dihedral
angles of the starting configuration should have their values in the desired angles interval and the
the equilibrium ¢q value should not be too close to the interval limits (as for the restricted bending
potential, described in 4.2.7, at least 10° difference is recommended).

(4.67)

Proper dihedrals: Combined bending-torsion potential

When the four particles forming the dihedral angle become collinear (this situation will never
happen in atomistic simulations, but it can occur in coarse-grained simulations) the calculation of
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the torsion angle and potential leads to numerical instabilities. One way to avoid this is to use the
restricted bending potential (see 4.2.7) that prevents the dihedral from reaching the 180° value.

Another way is to disregard any effects of the dihedral becoming ill-defined, keeping the dihedral
force and potential calculation continuous in entire angle range by coupling the torsion potential
(in a cosine form) with the bending potentials of the adjacent bending angles in a unique expres-
sion:

4
VCBT(QZ'—L 91', gbl) = k‘¢ sin3 91‘_1 Sin3 91 Z (079 COSn gbl (468)
n=0
This combined bending-torsion (CBT) potential has been proposed by [93] for polymer melt sim-
ulations and is extensively described in [88].

This potential has two main advantages:

e it does not only depend on the dihedral angle ¢; (between the ¢ — 2, ¢ — 1, ¢ and 7 + 1
beads) but also on the bending angles #;_; and 6; defined from three adjacent beads (¢ — 2,
i—1and i, and i — 1, i and i + 1, respectively). The two sin®§ pre-factors, tentatively
suggested by [94] and theoretically discussed by [95], cancel the torsion potential and force
when either of the two bending angles approaches the value of 180°.

e its dependence on ¢; is expressed through a polynomial in cos ¢; that avoids the singularities
in ¢ = 0° or 180° in calculating the torsional force.

These two properties make the CBT potential well-behaved for MD simulations with weak con-
straints on the bending angles or even for steered / non-equilibrium MD in which the bending and
torsion angles suffer major modifications. When using the CBT potential, the bending potentials
for the adjacent 0;_; and 6; may have any form. It is also possible to leave out the two angle
bending terms (#;_1 and ;) completely. Fig. 4.12 illustrates the difference between a torsion po-
tential with and without the sin® # factors (blue and gray curves, respectively). Additionally, the
derivative of Vo pr with respect to the Cartesian variables is straightforward:

Vet (05106,  OVepr 901 Vonr 00 Vet 0o;
cBr( = ¢i) _ 9Vepr —1, OVosr 96: | Vot qi 4.69)
87“[ 691'_1 877 8QZ 87"[ 8@ (97"[

The CBT is based on a cosine form without multiplicity, so it can only be symmetrical around 0°.
To obtain an asymmetrical dihedral angle distribution (e.g. only one maximum in [—180°:180°]
interval), a standard torsion potential such as harmonic angle or periodic cosine potentials should
be used instead of a CBT potential. However, these two forms have the inconveniences of the
force derivation (1/ sin ¢) and of the alignment of beads (6; or #;_; = 0°,180°). Coupling such
non-cos ¢ potentials with sin® # factors does not improve simulation stability since there are cases
in which 6 and ¢ are simultaneously 180°. The integration at this step would be possible (due to
the cancelling of the torsion potential) but the next step would be singular (¢ is not 180° and ¢ is
very close to 180°).

4.2.14 Tabulated bonded interaction functions

For full flexibility, any functional shape can be used for bonds, angles and dihedrals through user-
supplied tabulated functions. The functional shapes are:

Vi(rij) = kfi(rij) (4.70)
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V7 [kd mol™

Figure 4.12: Blue: surface plot of the combined bending-torsion potential (4.68 with £ = 10
kJ mol™!, ap = 2.41, a; = —2.95, as = 0.36, a3 = 1.33) when, for simplicity, the bending
angles behave the same (6; = 6, = 6). Gray: the same torsion potential without the sin® @ terms
(Ryckaert-Bellemans type). ¢ is the dihedral angle.

Va(Oije) =k fr(0ijx) 4.71)
Va(diji) =k fHijm) 4.72)

where k is a force constant in units of energy and f is a cubic spline function; for details see 6.12.1.
For each interaction, the force constant k£ and the table number n are specified in the topology.
There are two different types of bonds, one that generates exclusions (type 8) and one that does
not (type 9). For details see Table 5.5. The table files are supplied to the mdrun program. After
the table file name an underscore, the letter “b” for bonds, “a” for angles or “d” for dihedrals and
the table number must be appended. For example, a tabulated bond with n = 0 can be read from
the file table_bO0.xvg. Multiple tables can be supplied simply by adding files with different
values of n, and are applied to the appropriate bonds, as specified in the topology (Table 5.5).
The format for the table files is three fixed-format columns of any suitable width. These columns
must contain z, f(z), —f’(x), and the values of x should be uniformly spaced. Requirements for
entries in the topology are given in Table 5.5. The setup of the tables is as follows:

bonds: z is the distance in nm. For distances beyond the table length, mdrun will quit with an
error message.

angles: z is the angle in degrees. The table should go from O up to and including 180 degrees; the
derivative is taken in degrees.

dihedrals: x is the dihedral angle in degrees. The table should go from -180 up to and including
180 degrees; the IUPAC/IUB convention is used, i.e. zero is cis, the derivative is taken in degrees.
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4.0

Vioae (k3 mole™)

Figure 4.13: Position restraint potential.

4.3 Restraints

Special potentials are used for imposing restraints on the motion of the system, either to avoid
disastrous deviations, or to include knowledge from experimental data. In either case they are not
really part of the force field and the reliability of the parameters is not important. The potential
forms, as implemented in GROMACS, are mentioned just for the sake of completeness. Restraints
and constraints refer to quite different algorithms in GROMACS.

4.3.1 Position restraints

These are used to restrain particles to fixed reference positions R;. They can be used during
equilibration in order to avoid drastic rearrangements of critical parts (e.g. to restrain motion in a
protein that is subjected to large solvent forces when the solvent is not yet equilibrated). Another
application is the restraining of particles in a shell around a region that is simulated in detail, while
the shell is only approximated because it lacks proper interaction from missing particles outside
the shell. Restraining will then maintain the integrity of the inner part. For spherical shells, it is a
wise procedure to make the force constant depend on the radius, increasing from zero at the inner
boundary to a large value at the outer boundary. This feature has not, however, been implemented
in GROMACS.

The following form is used:

1
VEDT(ri) = ikpr|ri - Ri|2 4.73)

The potential is plotted in Fig. 4.13.

The potential form can be rewritten without loss of generality as:

1 ) N )
Vr(ri) = 5 [k;;fr(xi — X2 R AR (i — V)2 Y+ k(2 — Z0)? z} (4.74)
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Figure 4.14: Flat-bottomed position restraint potential. (A) Not inverted, (B) inverted.

Now the forces are:

EP = =k (2 — X))
F) = =k (v —Y3) (4.75)
Fp = —kp (20— Zi)

Using three different force constants the position restraints can be turned on or off in each spatial
dimension; this means that atoms can be harmonically restrained to a plane or a line. Position
restraints are applied to a special fixed list of atoms. Such a list is usually generated by the
pdb2gmx program.

4.3.2 Flat-bottomed position restraints

Flat-bottomed position restraints can be used to restrain particles to part of the simulation volume.
No force acts on the restrained particle within the flat-bottomed region of the potential, however a
harmonic force acts to move the particle to the flat-bottomed region if it is outside it. It is possible
to apply normal and flat-bottomed position restraints on the same particle (however, only with the
same reference position R;). The following general potential is used (Figure 4.14A):

1
Vin(ri) = ikfb[dg(ri; R;) — ra)? H[dg(rs; R;) — 1), (4.76)

where R; is the reference position, 7, is the distance from the center with a flat potential, kg, the
force constant, and H is the Heaviside step function. The distance dy(r;; R;) from the reference
position depends on the geometry g of the flat-bottomed potential.

The following geometries for the flat-bottomed potential are supported:
Sphere (g = 1): The particle is kept in a sphere of given radius. The force acts towards the center
of the sphere. The following distance calculation is used:

dg(ri; Ri) = |ri — Ry 4.77)

Cylinder (¢ = 6, 7, 8): The particle is kept in a cylinder of given radius parallel to the x (g = 6),
y (g = 7), or z-axis (g = 8). For backwards compatibility, setting g = 2 is mapped to g = 8 in the
code so that old . tpr files and topologies work. The force from the flat-bottomed potential acts
towards the axis of the cylinder. The component of the force parallel to the cylinder axis is zero.
For a cylinder aligned along the z-axis:

dg(rs; Ri) = /(i — X0)? + (y; — Yi)? (4.78)
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Layer (g = 3,4,5): The particle is kept in a layer defined by the thickness and the normal of the
layer. The layer normal can be parallel to the x, y, or z-axis. The force acts parallel to the layer
normal.

dg(Ti;Ri) = |J}z — Xi|, or dg(T‘Z';RZ') = |yz — sz|, or dg(Ti;RZ') = |ZZ — Zi|. (4.79)

It is possible to apply multiple independent flat-bottomed position restraints of different geometry
on one particle. For example, applying a cylinder and a layer in z keeps a particle within a disk.
Applying three layers in x, y, and z keeps the particle within a cuboid.

In addition, it is possible to invert the restrained region with the unrestrained region, leading to
a potential that acts to keep the particle outside of the volume defined by R;, g, and rg,. That
feature is switched on by defining a negative 7, in the topology. The following potential is used
(Figure 4.14B):

; 1
V" (ri) = Shmldg(ri; Bi) — [reo)* H = (dg(ri; Ri) = |re])]- (4.80)

4.3.3 Angle restraints

These are used to restrain the angle between two pairs of particles or between one pair of particles
and the z-axis. The functional form is similar to that of a proper dihedral. For two pairs of atoms:

T —T; T — Tk
Var(ri, v, 71, 71) = kg (1 — cos(n(6 — 6y))), where 6 = arccos J LB
ar( 0wl Tk l) ar( ( ( U))) (H”'j_rin H"‘l_"‘k‘H)

(4.81)
For one pair of atoms and the z-axis:
Var(13,75) = kor(1 — cos(n(f — 6p))), where 6 = arccos ﬁ -0 (4.82)
Ty —Tg
1

A multiplicity (n) of 2 is useful when you do not want to distinguish between parallel and anti-
parallel vectors. The equilibrium angle 6 should be between 0 and 180 degrees for multiplicity 1
and between 0 and 90 degrees for multiplicity 2.

4.3.4 Dihedral restraints
These are used to restrain the dihedral angle ¢ defined by four particles as in an improper dihedral
(sec. 4.2.12) but with a slightly modified potential. Using:
¢' = (¢ — ¢o) MOD 27 (4.83)
where ¢q is the reference angle, the potential is defined as:
Skaine (¢ — do — Ag)? for ¢ > A¢

Vanr() = {4 for o < Ao (4.84)

where A¢ is a user defined angle and k4;p,, is the force constant. Note that in the input in topology
files, angles are given in degrees and force constants in kJ/mol/rad?.
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Figure 4.15: Distance Restraint potential.

4.3.5 Distance restraints

Distance restraints add a penalty to the potential when the distance between specified pairs of
atoms exceeds a threshold value. They are normally used to impose experimental restraints from,
for instance, experiments in nuclear magnetic resonance (NMR), on the motion of the system.
Thus, MD can be used for structure refinement using NMR data. In GROMACS there are three
ways to impose restraints on pairs of atoms:

e Simple harmonic restraints: use [ bonds ] type 6 (see sec. 5.4.4).
e Piecewise linear/harmonic restraints: [ bonds ] type 10.
o Complex NMR distance restraints, optionally with pair, time and/or ensemble averaging.

The last two options will be detailed now.

The potential form for distance restraints is quadratic below a specified lower bound and between
two specified upper bounds, and linear beyond the largest bound (see Fig. 4.15).

%de<rij — 7’0)2 for ri; < To
0 for 79 < 1r; < M
Vdr (Tij) = 1 9 (485)
§l<:d¢(rij — 7”1) for m < ri; < T2
1
§kidT (7”2 — T1)(27‘i]’ —T9 — ’I”l) for T2 S Tij
The forces are o
—kgy (T‘Z'j — ’I“o) r;j for ri; < To
0 for rg < ri; < T
F; = . (4.86)
_kdr(rij — 7‘1) T,;; for r < ri; < T2
T
—kgy (7“2 — 7“1) Ti; for r < T35
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For restraints not derived from NMR data, this functionality will usually suffice and a section of
[ bonds ] type 10 can be used to apply individual restraints between pairs of atoms, see 5.8.1.
For applying restraints derived from NMR measurements, more complex functionality might be re-
quired, which is provided through the [ distance_restraints 1] section and is described
below.

Time averaging

Distance restraints based on instantaneous distances can potentially reduce the fluctuations in a
molecule significantly. This problem can be overcome by restraining to a time averaged dis-
tance [96]. The forces with time averaging are:

— Ti; —
*k‘gT (Tz’j — 7”0) T’i; for ri; < 7o
0 for ro < ri;p < 71
P, - ) o ) (4.87)
_kgT(Tz‘j — 7"1)?_2; for 1 < ri; < T2
—k‘gr (7“2 — 7‘1)M for ro < ﬂ‘j

T’L]
where 7;; is given by an exponential running average with decay time 7:

35173 (4.88)

ri; =< Tij

The force constant £, is switched on slowly to compensate for the lack of history at the beginning

of the simulation: ;
kg, = kar (1 — exp (—)) (4.89)
T

Because of the time averaging, we can no longer speak of a distance restraint potential.

This way an atom can satisfy two incompatible distance restraints on average by moving between
two positions. An example would be an amino acid side-chain that is rotating around its x dihedral
angle, thereby coming close to various other groups. Such a mobile side chain can give rise to
multiple NOEs that can not be fulfilled by a single structure.

The computation of the time averaged distance in the mdrun program is done in the following
fashion:

r3(0) = 1i(0)7°
7“_32']' (t) = ?”_31'3' (t — At) exp (—%) + Tij (t)fS {1 — exp (—%)}

When a pair is within the bounds, it can still feel a force because the time averaged distance can
still be beyond a bound. To prevent the protons from being pulled too close together, a mixed
approach can be used. In this approach, the penalty is zero when the instantaneous distance is
within the bounds, otherwise the violation is the square root of the product of the instantaneous
violation and the time averaged violation:

(4.90)

— T =
kgr\/(rij — 7“0)(7“1']' — 7“0) TZ; for Tij < T and Tij < T
L . _ Ti; _
Fi =9 —k% min (\/(mj —r1)(Fij — 1), 72 — 7“1> s for rij >r1 and T >
0 otherwise

4.91)
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Averaging over multiple pairs

Sometimes it is unclear from experimental data which atom pair gives rise to a single NOE, in
other occasions it can be obvious that more than one pair contributes due to the symmetry of the
system, e.g. a methyl group with three protons. For such a group, it is not possible to distinguish
between the protons, therefore they should all be taken into account when calculating the distance
between this methyl group and another proton (or group of protons). Due to the physical nature of
magnetic resonance, the intensity of the NOE signal is inversely proportional to the sixth power
of the inter-atomic distance. Thus, when combining atom pairs, a fixed list of [V restraints may be
taken together, where the apparent “distance” is given by:

N -1/6
ra(t) = lz w)—ﬂ (4.92)

n=1

where we use r;; or eqn. 4.88 for the 7,,. The ry of the instantaneous and time-averaged distances
can be combined to do a mixed restraining, as indicated above. As more pairs of protons contribute
to the same NOE signal, the intensity will increase, and the summed “distance” will be shorter than
any of its components due to the reciprocal summation.

There are two options for distributing the forces over the atom pairs. In the conservative option,
the force is defined as the derivative of the restraint potential with respect to the coordinates. This
results in a conservative potential when time averaging is not used. The force distribution over
the pairs is proportional to 7~%. This means that a close pair feels a much larger force than a
distant pair, which might lead to a molecule that is “too rigid.” The other option is an equal
force distribution. In this case each pair feels 1/ of the derivative of the restraint potential with
respect to 7. The advantage of this method is that more conformations might be sampled, but the
non-conservative nature of the forces can lead to local heating of the protons.

It is also possible to use ensemble averaging using multiple (protein) molecules. In this case the
bounds should be lowered as in:

T = n x M—1/6

vy = 1ok M-1/6 (4.93)

where M is the number of molecules. The GROMACS preprocessor grompp can do this auto-
matically when the appropriate option is given. The resulting “distance” is then used to calculate
the scalar force according to:

0 ry <7
T
F;, = kar(ry —7r1)55 ST <o (4.94)
Tii
kar(ro —m1)=2L N > 19

le
where ¢ and j denote the atoms of all the pairs that contribute to the NOE signal.

Using distance restraints

A list of distance restrains based on NOE data can be added to a molecule definition in your
topology file, like in the following example:



92 Chapter 4. Interaction function and force fields

[ distance_restraints ]

; ai aj type index type’ low upl up2 fac
10 16 1 0 1 0.0 0.3 0.4 1.0
10 28 1 1 1 0.0 0.3 0.4 1.0
10 46 1 1 1 0.0 0.3 0.4 1.0
16 22 1 2 1 0.0 0.3 0.4 2.5
16 34 1 3 1 0.0 0.5 0.6 1.0

In this example a number of features can be found. In columns ai and aj you find the atom
numbers of the particles to be restrained. The t ype column should always be 1. As explained
in 4.3.5, multiple distances can contribute to a single NOE signal. In the topology this can be
set using the index column. In our example, the restraints 10-28 and 10-46 both have index 1,
therefore they are treated simultaneously. An extra requirement for treating restraints together is
that the restraints must be on successive lines, without any other intervening restraint. The t ype’
column will usually be 1, but can be set to 2 to obtain a distance restraint that will never be time-
and ensemble-averaged; this can be useful for restraining hydrogen bonds. The columns low,
upl, and up2 hold the values of rg, r1, and ro from eqn. 4.85. In some cases it can be useful
to have different force constants for some restraints; this is controlled by the column fac. The
force constant in the parameter file is multiplied by the value in the column fac for each restraint.
Information for each restraint is stored in the energy file and can be processed and plotted with
gmx nmr.

4.3.6 Orientation restraints

This section describes how orientations between vectors, as measured in certain NMR experi-
ments, can be calculated and restrained in MD simulations. The presented refinement methodol-
ogy and a comparison of results with and without time and ensemble averaging have been pub-
lished [97].

Theory

In an NMR experiment, orientations of vectors can be measured when a molecule does not tum-
ble completely isotropically in the solvent. Two examples of such orientation measurements are
residual dipolar couplings (between two nuclei) or chemical shift anisotropies. An observable for
a vector r; can be written as follows:

2
0; = gU’(SDz) (4.95)

where S is the dimensionless order tensor of the molecule. The tensor D, is given by:

. 3zx —1 3zy 3xz

;= HT‘ZHO‘ 3xy 3yy —1 3yz (4.96)
! 3rz 3yz 3zz—1

with: z= Ty = W 62 (4.97)

= y e =
|7l |7l |74l
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For a dipolar coupling 7; is the vector connecting the two nuclei, & = 3 and the constant ¢; is
given by:

_Ho i b
 Arn 47

where % and 4 are the gyromagnetic ratios of the two nuclei.

¢ Vi (4.98)

The order tensor is symmetric and has trace zero. Using a rotation matrix T it can be transformed
into the following form:

—%(1 /) 0 0
TIST =5 0 —3(1+n) 0 (4.99)
0 0 1

where —1 < s < 1land 0 < n < 1. s is called the order parameter and 7 the asymmetry of
the order tensor S. When the molecule tumbles isotropically in the solvent, s is zero, and no
orientational effects can be observed because all §; are zero.

Calculating orientations in a simulation

For reasons which are explained below, the D matrices are calculated which respect to a reference
orientation of the molecule. The orientation is defined by a rotation matrix R, which is needed to
least-squares fit the current coordinates of a selected set of atoms onto a reference conformation.
The reference conformation is the starting conformation of the simulation. In case of ensemble av-
eraging, which will be treated later, the structure is taken from the first subsystem. The calculated
Df{ matrix is given by:

D¢(t) = R(t)D;(t)RT(t) (4.100)

The calculated orientation for vector ¢ is given by:

2
o5 (t) = gtr(S(t)Df(t)) (4.101)
The order tensor S(t) is usually unknown. A reasonable choice for the order tensor is the tensor
which minimizes the (weighted) mean square difference between the calculated and the observed

orientations:

MSD(t) = (i wi> > wi(55(t) — 65)? (4.102)
=1 i=1

To properly combine different types of measurements, the unit of w; should be such that all terms
are dimensionless. This means the unit of wj; is the unit of §; to the power —2. Note that scaling
all w; with a constant factor does not influence the order tensor.

Time averaging

Since the tensors D; fluctuate rapidly in time, much faster than can be observed in an experiment,
they should be averaged over time in the simulation. However, in a simulation the time and the
number of copies of a molecule are limited. Usually one can not obtain a converged average of the
D; tensors over all orientations of the molecule. If one assumes that the average orientations of



94 Chapter 4. Interaction function and force fields

the r; vectors within the molecule converge much faster than the tumbling time of the molecule,
the tensor can be averaged in an axis system that rotates with the molecule, as expressed by equa-
tion (4.100). The time-averaged tensors are calculated using an exponentially decaying memory

function:
t . t—u
/ D§(u)exp | — du
u=to T

DY(t) = (4.103)

Assuming that the order tensor S fluctuates slower than the D;, the time-averaged orientation can
be calculated as:

59(t) = gtr(S(t)D?(t)) (4.104)

where the order tensor S(t) is calculated using expression (4.102) with §5(¢) replaced by d¢(¢).

Restraining
The simulated structure can be restrained by applying a force proportional to the difference be-

tween the calculated and the experimental orientations. When no time averaging is applied, a
proper potential can be defined as:

1 -
= — i ¢ — 6" 4.1
% 2k ZE 1 w; (05 (t) —0;") (4.105)

where the unit of k is the unit of energy. Thus the effective force constant for restraint ¢ is kw;.
The forces are given by minus the gradient of V. The force F; working on vector 7; is:

av
Fi(t) = “dr
= hu(85(t) — oey 200D
- E ‘ dTi
20 2
—  kwi(85(t) — 5°P) ||r||c2+"‘ <2RTeri - H:_Etr(RTSRririT)ri)

Ensemble averaging

Ensemble averaging can be applied by simulating a system of M subsystems that each contain
an identical set of orientation restraints. The systems only interact via the orientation restraint
potential which is defined as:

1 a C exrp\ 2
V= Mgk ; wi (8 (t) — 6;°F) (4.106)

The force on vector 7; ,,, in subsystem m is given by:

dog,, (t
Fim(t) = v —kwi(df(t)_(sfmp)L()

d’r’mn

4.107
erm ( )
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Time averaging

When using time averaging it is not possible to define a potential. We can still define a quantity
that gives a rough idea of the energy stored in the restraints:

N
1
V= Mk > wi5E(t) — 6F)? (4.108)
i=1
The force constant k,, is switched on slowly to compensate for the lack of history at times close to
to. It is exactly proportional to the amount of average that has been accumulated:

1/t t—
L T exp <— “) du (4.109)
T u=to T
What really matters is the definition of the force. It is chosen to be proportional to the square root
of the product of the time-averaged and the instantaneous deviation. Using only the time-averaged

deviation induces large oscillations. The force is given by:

0 for ab<0

() = dse, (t
Fim(t) Kow S ab ™ e 0 (4.110)

Using orientation restraints
Orientation restraints can be added to a molecule definition in the topology file in the section

[ orientation_restraints ]. Here we give an example section containing five N-H
residual dipolar coupling restraints:

[ orientation_restraints ]

; oai aj type exp. label alpha const. obs. weight
; Hz nm”3 Hz Hz"-2
31 32 1 1 3 3 6.083 -6.73 1.0
43 44 1 1 4 3 6.083 -7.87 1.0
55 56 1 1 5 3 6.083 -7.13 1.0
65 66 1 1 6 3 6.083 -2.57 1.0
73 74 1 1 7 3 6.083 -2.10 1.0

The unit of the observable is Hz, but one can choose any other unit. In columns ai and aj you
find the atom numbers of the particles to be restrained. The t ype column should always be 1. The
exp. column denotes the experiment number, starting at 1. For each experiment a separate order
tensor S is optimized. The label should be a unique number larger than zero for each restraint. The
alpha column contains the power « that is used in equation (4.96) to calculate the orientation.
The const. column contains the constant ¢; used in the same equation. The constant should
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have the unit of the observable times nm®. The column obs. contains the observable, in any unit
you like. The last column contains the weights w;; the unit should be the inverse of the square of
the unit of the observable.

Some parameters for orientation restraints can be specified in the grompp . mdp file, for a study
of the effect of different force constants and averaging times and ensemble averaging see [97].
Information for each restraint is stored in the energy file and can be processed and plotted with
gmx nmr.

4.4 Polarization

Polarization can be treated by GROMACS by attaching shell (Drude) particles to atoms and/or
virtual sites. The energy of the shell particle is then minimized at each time step in order to remain
on the Born-Oppenheimer surface.

4.4.1 Simple polarization

This is implemented as a harmonic potential with equilibrium distance 0. The input given in the
topology file is the polarizability o (in GROMACS units) as follows:

[ polarization ]
; Atom 1 j type alpha
1 2 1 0.001

in this case the polarizability volume is 0.001 nm? (or 1 A3). In order to compute the harmonic
force constant k.5 (Where cs stands for core-shell), the following is used [45]:
a
«

kes = @.111)

where ¢; is the charge on the shell particle.

4.4.2 Anharmonic polarization

For the development of the Drude force field by Roux and McKerell [98] it was found that some
particles can overpolarize and this was fixed by introducing a higher order term in the polarization
energy:

‘/pol = %Tgs Tes <0 (4.112)
= et kpyy(res — 0)* Tes >0 (4.113)

where ¢ is a user-defined constant that is set to 0.02 nm for anions in the Drude force field [99].
Since this original introduction it has also been used in other atom types [98].

[ polarization ]
;Atom 1 type alpha (nm”"3) delta khyp
1 2 2 0.001786 0.02 16.736e8

The above force constant kj,,, corresponds to 4- 10® kcal/mol/nm?, hence the strange number.
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4.4.3 Water polarization

A special potential for water that allows anisotropic polarization of a single shell particle [45].

4.4.4 Thole polarization

Based on early work by Thole [100], Roux and coworkers have implemented potentials for molecules
like ethanol [101, 102, 103]. Within such molecules, there are intra-molecular interactions be-
tween shell particles, however these must be screened because full Coulomb would be too strong.
The potential between two shell particles ¢ and j is:

Vthole = 4 [1 - (1 + T;) exp”j] 4.114)

Tij
Note that there is a sign error in Equation 1 of Noskov et al. [103]:

_ Tij
iy = @ (4.115)

where a is a magic (dimensionless) constant, usually chosen to be 2.6 [103]; «; and «; are the
polarizabilities of the respective shell particles.

4.5 Free energy interactions

This section describes the A-dependence of the potentials used for free energy calculations (see
sec. 3.12). All common types of potentials and constraints can be interpolated smoothly from state
A (A = 0) to state B (A = 1) and vice versa. All bonded interactions are interpolated by linear
interpolation of the interaction parameters. Non-bonded interactions can be interpolated linearly
or via soft-core interactions.

Starting in GROMACS 4.6, A is a vector, allowing different components of the free energy trans-
formation to be carried out at different rates. Coulomb, Lennard-Jones, bonded, and restraint terms
can all be controlled independently, as described in the . mdp options.

Harmonic potentials

The example given here is for the bond potential, which is harmonic in GROMACS. However,
these equations apply to the angle potential and the improper dihedral potential as well.

1 2
Vi, = 5[(1—)\)k§‘+/\kﬂ [b— (1= N)pg — 26| (4.116)
oV, _ 1. a4 A B2
I A S LRGN It

(08 = bF) [b— (1= Mot = Af ] [(1 = Nkg' + Mk’ 4.117)
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GROMOS-96 bonds and angles

Fourth-power bond stretching and cosine-based angle potentials are interpolated by linear interpo-
lation of the force constant and the equilibrium position. Formulas are not given here.

Proper dihedrals

For the proper dihedrals, the equations are somewhat more complicated:
Va = [0 =Nk + MF| (14 cos [ngo — (1 = Ne = 2P| (4.118)
oV,
T = K =k (14 cos[ngs — (1= Ve — ao¥]) +
(68 = 62 [(1 = Mk = Mkf | sin [nge — (1 = Vo = 2P| @.119)

Note: that the multiplicity ny can not be parameterized because the function should remain peri-
odic on the interval [0, 27].

Tabulated bonded interactions

For tabulated bonded interactions only the force constant can interpolated:

V o= (1=Nk*+ B f (4.120)
8V _ B N A
> = (K5 — k) f (4.121)

Coulomb interaction

The Coulomb interaction between two particles of which the charge varies with A is:

f A _A B B
e = ey [( )G q; + A g qj} ( )
oV, f A A B B
— a2 B L 4.123
N " [ % 95 + 44 } (4.123)
where f = —— = 138.935 458 (see chapter 2).

Ameg

Coulomb interaction with reaction field

The Coulomb interaction including a reaction field, between two particles of which the charge
varies with A is:

1
Vo= [l tkaprl - crf] (1= Na'a + xaPaf (4.124)
ij
ovVe 1 2 A A, B B

Note that the constants k,; and c, s are defined using the dielectric constant €, of the medium
(see sec. 4.1.4).
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Lennard-Jones interaction

For the Lennard-Jones interaction between two particles of which the atom type varies with A\ we
can write:

(1-NCh+2CE 1 -NCd+ 2 CE

Voo _ 4.126

. 2, . (4.126)

oV, _ CH-Cfy CF-C¢ (4.127)
O\ ri? re; .

It should be noted that it is also possible to express a pathway from state A to state B using o and
€ (see eqn. 4.5). It may seem to make sense physically to vary the force field parameters ¢ and €
rather than the derived parameters C'12 and Cs. However, the difference between the pathways in
parameter space is not large, and the free energy itself does not depend on the pathway, so we use
the simple formulation presented above.

Kinetic Energy

When the mass of a particle changes, there is also a contribution of the kinetic energy to the free

energy (note that we can not write the momentum p as mw, since that would result in the sign of

% being incorrect [104]):

p2

—_

E, = - 4.128
F 2(1— NymA + AmB (4.128)
E 1 2 B_ . A
0By _ 1 p (m” —m”) (4.129)
1)) 2 ((1 — A\)ymA + AmB)?2
after taking the derivative, we can insert p = mwv, such that:
OF 1
8—; = —§v2(mB —m?) (4.130)

Constraints

The constraints are formally part of the Hamiltonian, and therefore they give a contribution to the
free energy. In GROMACS this can be calculated using the LINCS or the SHAKE algorithm. If
we have k = 1... K constraint equations g for LINCS, then

gk = |rk| — di (4.131)

where T, is the displacement vector between two particles and dj, is the constraint distance be-
tween the two particles. We can express the fact that the constraint distance has a A dependency
by

di = (1= N)dft + \dP (4.132)

Thus the A-dependent constraint equation is

gk = el = (1= N)dit + 2df). (4.133)
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Figure 4.16: Soft-core interactions at A = 0.5, withp = 2 and C§' = Oy = Cf = CF = 1.

The (zero) contribution G to the Hamiltonian from the constraints (using Lagrange multipliers Az,
which are logically distinct from the free-energy ) is

G

oG

O

For SHAKE, the constraint equations are

with dj. as before, so

aa
A

4.5.1 Soft-core interactions

K

> ke
k

0G 0dy,

ady, ON

K
=3 M (df — df)
k

2 2
gk =1y — dj

K

= 23 N (dkB - dﬁ)

k

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

In a free-energy calculation where particles grow out of nothing, or particles disappear, using the
the simple linear interpolation of the Lennard-Jones and Coulomb potentials as described in Equa-
tions 4.127 and 4.125 may lead to poor convergence. When the particles have nearly disappeared,
or are close to appearing (at A close to O or 1), the interaction energy will be weak enough for
particles to get very close to each other, leading to large fluctuations in the measured values of
OV /O (which, because of the simple linear interpolation, depends on the potentials at both the

endpoints of \).
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To circumvent these problems, the singularities in the potentials need to be removed. This can be
done by modifying the regular Lennard-Jones and Coulomb potentials with “soft-core” potentials
that limit the energies and forces involved at \ values between 0 and 1, but not at A = O or 1.

In GROMACS the soft-core potentials V. are shifted versions of the regular potentials, so that the
singularity in the potential and its derivatives at 7 = 0 is never reached:

Vie(r) = (1 =XNVA1ra) +AVE(rp) (4.139)
ra = (aofr41%)° (4.140)
rg = (ach1 -2 +1°)° (4.141)

where V4 and V7 are the normal “hard core” Van der Waals or electrostatic potentials in state A
(A = 0) and state B (A = 1) respectively, « is the soft-core parameter (set with sc_alpha in
the .mdp file), p is the soft-core A power (set with sc_power), o is the radius of the interaction,
which is (012/06)1/6 or an input parameter (sc_sigma) when Cg or C3 is zero.

For intermediate \, r4 and rp alter the interactions very little for r > o'/%¢ and quickly switch
the soft-core interaction to an almost constant value for smaller r (Fig. 4.16). The force is:

B OVse(r)
or

— (1= NFA(ry) (’“)5 FAFB(rp) <7;)5 (4.142)

rA

Fs.(r) =

where F4 and F'P are the “hard core” forces. The contribution to the derivative of the free energy
is:

OVise(r)

OVA(r4) Ory oVB(rg) orp
B3 + A

= VPlrp) =V + (=N arg OX

= VBrg)—VA>ra) +
% [AFB(rB)rgf’agu — AP —(1— A)FA(rA)rj’agAp—l} (4.143)

The original GROMOS Lennard-Jones soft-core function [105] uses p = 2, but p = 1 gives a
smoother 0H /O curve.

Another issue that should be considered is the soft-core effect of hydrogens without Lennard-Jones
interaction. Their soft-core o is set with sc-sigma in the .mdp file. These hydrogens produce
peaks in OH/OA at X is 0 and/or 1 for p = 1 and close to 0 and/or 1 with p = 2. Lowering
sc-sigma will decrease this effect, but it will also increase the interactions with hydrogens
relative to the other interactions in the soft-core state.

When soft-core potentials are selected (by setting sc—alpha >0), and the Coulomb and Lennard-
Jones potentials are turned on or off sequentially, then the Coulombic interaction is turned off
linearly, rather than using soft-core interactions, which should be less statistically noisy in most
cases. This behavior can be overwritten by using the mdp option sc-coul to yes. Note that the
sc-coul is only taken into account when lambda states are used, not with couple—-1ambda0 /
couple-lambdal, and you can still turn off soft-core interactions by setting sc—alpha=0.
Additionally, the soft-core interaction potential is only applied when either the A or B state has
zero interaction potential. If both A and B states have nonzero interaction potential, default linear
scaling described above is used. When both Coulombic and Lennard-Jones interactions are turned
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i+1 i+3

[ i+2 i+4

Figure 4.17: Atoms along an alkane chain.

off simultaneously, a soft-core potential is used, and a hydrogen is being introduced or deleted,
the sigma is set to sc—sigma—-min, which itself defaults to sc-sigma-default.

Recently, a new formulation of the soft-core approach has been derived that in most cases gives
lower and more even statistical variance than the standard soft-core path described above. [106,
107] Specifically, we have:

Vae(r) = (1=2VA(ra) + AV (rp) (4.144)
1
ra = (aofﬁxs)\p + 7‘48) . (4.145)
1
rp = (aof(1— )7 +r1)* (4.146)

This “1-1-48” path is also implemented in GROMACS. Note that for this path the soft core «
should satisfy 0.001 < o < 0.003, rather than o ~ 0.5.

4.6 Methods

4.6.1 Exclusions and 1-4 Interactions.

Atoms within a molecule that are close by in the chain, i.e. atoms that are covalently bonded,
or linked by one or two atoms are called first neighbors, second neighbors and third neighbors,
respectively (see Fig. 4.17). Since the interactions of atom i with atoms i+1 and i+2 are mainly
quantum mechanical, they can not be modeled by a Lennard-Jones potential. Instead it is assumed
that these interactions are adequately modeled by a harmonic bond term or constraint (i, i+1) and
a harmonic angle term (i, i+2). The first and second neighbors (atoms i+1 and i+2) are therefore
excluded from the Lennard-Jones interaction list of atom i; atoms i+1 and i+2 are called exclusions
of atom i.

For third neighbors, the normal Lennard-Jones repulsion is sometimes still too strong, which
means that when applied to a molecule, the molecule would deform or break due to the internal
strain. This is especially the case for carbon-carbon interactions in a cis-conformation (e.g. cis-
butane). Therefore, for some of these interactions, the Lennard-Jones repulsion has been reduced
in the GROMOS force field, which is implemented by keeping a separate list of 1-4 and nor-
mal Lennard-Jones parameters. In other force fields, such as OPLS [108], the standard Lennard-
Jones parameters are reduced by a factor of two, but in that case also the dispersion (r~%) and the
Coulomb interaction are scaled. GROMACS can use either of these methods.
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4.6.2 Charge Groups

In principle, the force calculation in MD is an O(N?) problem. Therefore, we apply a cut-off for
non-bonded force (NBF) calculations; only the particles within a certain distance of each other
are interacting. This reduces the cost to O(N) (typically 100N to 200N) of the NBF. It also
introduces an error, which is, in most cases, acceptable, except when applying the cut-off implies
the creation of charges, in which case you should consider using the lattice sum methods provided
by GROMACS.

Consider a water molecule interacting with another atom. If we would apply a plain cut-off on an
atom-atom basis we might include the atom-oxygen interaction (with a charge of —0.82) without
the compensating charge of the protons, and as a result, induce a large dipole moment over the
system. Therefore, we have to keep groups of atoms with total charge 0 together. These groups are
called charge groups. Note that with a proper treatment of long-range electrostatics (e.g. particle-
mesh Ewald (sec. 4.8.2), keeping charge groups together is not required.

4.6.3 Treatment of Cut-offs in the group scheme

GROMACS is quite flexible in treating cut-offs, which implies there can be quite a number of
parameters to set. These parameters are set in the input file for grompp. There are two sort of
parameters that affect the cut-off interactions; you can select which type of interaction to use in
each case, and which cut-offs should be used in the neighbor searching.

For both Coulomb and van der Waals interactions there are interaction type selectors (termed
vdwtype and coulombtype) and two parameters, for a total of six non-bonded interaction
parameters. See the User Guide for a complete description of these parameters.

In the group cut-off scheme, all of the interaction functions in Table 4.2 require that neighbor
searching be done with a radius at least as large as the r. specified for the functional form, because
of the use of charge groups. The extra radius is typically of the order of 0.25 nm (roughly the
largest distance between two atoms in a charge group plus the distance a charge group can diffuse
within neighbor list updates).

Type Parameters
Coulomb Plain cut-off Ty Ep

Reaction field Tey Erf

Shift function T1, Tes Er

Switch function | r1, r¢, &
Vdw Plain cut-off Te

Shift function 71, Te

Switch function | 71, 7.

Table 4.2: Parameters for the different functional forms of the non-bonded interactions.
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3fad 3out 4fdn

Figure 4.18: The six different types of virtual site construction in GROMACS. The constructing
atoms are shown as black circles, the virtual sites in gray.

4.7 Virtual interaction sites

Virtual interaction sites (called dummy atoms in GROMACS versions before 3.3) can be used in
GROMACS in a number of ways. We write the position of the virtual site 7, as a function of the
positions of other particles r;: rs = f(ry..r,). The virtual site, which may carry charge or be
involved in other interactions, can now be used in the force calculation. The force acting on the
virtual site must be redistributed over the particles with mass in a consistent way. A good way to
do this can be found in ref. [109]. We can write the potential energy as:

V=V(rs,ry,...,rn) =V*(ry,...,rn) (4.147)
The force on the particle ¢ is then:

ove 9V aV or,

Fi - 87"1' - _(‘%i B 6r5 87‘@

= FJret 4 F} (4.148)

The first term is the normal force. The second term is the force on particle ¢ due to the virtual site,
which can be written in tensor notation:

Oxrs Oys 0z
Ozx; Ox; Ox;
F = g‘zs ‘ZZ g? F, (4.149)
Ors Oys Oz
0z, 0z 0z

where F'; is the force on the virtual site and x, ys and 2z, are the coordinates of the virtual site. In
this way, the total force and the total torque are conserved [109].

The computation of the virial (eqn. 3.24) is non-trivial when virtual sites are used. Since the virial
involves a summation over all the atoms (rather than virtual sites), the forces must be redistributed
from the virtual sites to the atoms (using eqn. 4.149) before computation of the virial. In some
special cases where the forces on the atoms can be written as a linear combination of the forces on
the virtual sites (types 2 and 3 below) there is no difference between computing the virial before
and after the redistribution of forces. However, in the general case redistribution should be done
first.

There are six ways to construct virtual sites from surrounding atoms in GROMACS, which we
classify by the number of constructing atoms. Note that all site types mentioned can be constructed
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from types 3fd (normalized, in-plane) and 3out (non-normalized, out of plane). However, the
amount of computation involved increases sharply along this list, so we strongly recommended
using the first adequate virtual site type that will be sufficient for a certain purpose. Fig. 4.18
depicts 6 of the available virtual site constructions. The conceptually simplest construction types
are linear combinations:

N
rs = Zwi r; (4.150)
i=1
The force is then redistributed using the same weights:

F,=w,; Fy (4.151)

The types of virtual sites supported in GROMACS are given in the list below. Constructing atoms
in virtual sites can be virtual sites themselves, but only if they are higher in the list, i.e. virtual
sites can be constructed from “particles” that are simpler virtual sites.

2. As alinear combination of two atoms (Fig. 4.18 2):
wp=1—-a, wj=a (4.152)
In this case the virtual site is on the line through atoms ¢ and j.
3. As alinear combination of three atoms (Fig. 4.18 3):
wi=1l—a—-b, wj=a, wy,=">0 (4.153)
In this case the virtual site is in the plane of the other three particles.

3fd. In the plane of three atoms, with a fixed distance (Fig. 4.18 3fd):

rij +arjg

L Tk 4.154
7ij + ar k] ( )

rs = T+

In this case the virtual site is in the plane of the other three particles at a distance of |b| from
1. The force on particles ¢, j and k due to the force on the virtual site can be computed as:

F, = F,—(F,—p) o b
F' = (1—a)y(F,—p) where [73j + ar i (4.155)
J Tis - Fs
r — r
Fk? = a’)/(Fs — p) p Tis - Tis L8
3fad. In the plane of three atoms, with a fixed angle and distance (Fig. 4.18 3fad):
rs = 1; + dcos Gﬂ + dsin@r—L where 7| = 7 — Tij " Tk Tij (4.156)
[rij 7] Tij " Tij

In this case the virtual site is in the plane of the other three particles at a distance of |d| from
¢ at an angle of « with 7;;. Atom k defines the plane and the direction of the angle. Note
that in this case b and o must be specified, instead of a and b (see also sec. 5.2.2). The force
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on particles ¢, 7 and k due to the force on the virtual site can be computed as (with r as
defined in eqn. 4.156):

F, - F, - dcos.HF1 dsin 6 rij.rij2+F3
735 [rol \7ij - 7ij
F; _ dcos.@F1 - dsin 6 Fyt rij-rij2+F3
[7ij L Tij  Tij
F, - dsin 6 ,
L
where F1:Fs—7’r” srij7F2:F1_77’J_ Srland ngirw S'I"J_
Tij - Tij TLTL Tij * Tij
(4.157)
3out. As a non-linear combination of three atoms, out of plane (Fig. 4.18 3out):
rs = ritary;+ bri, + C(T‘Z'j X Tik:) (4.158)

This enables the construction of virtual sites out of the plane of the other atoms. The force
on particles ¢, j and k£ due to the force on the virtual site can be computed as:

[ a  —czip  CYi
F. = C Zik a —cxi | Fs

L —CYik CTig a

b CZij  —CYij (4.159)
F; = —C Zij b cxij FS

L cyij —C:L'ij b
F, = F,- F; — F;c

4fdn. From four atoms, with a fixed distance, see separate Fig. 4.19. This construction is a bit
complex, in particular since the previous type (4fd) could be unstable which forced us to
introduce a more elaborate construction:

rjg = ary—r;=a(xp—x) — (X —%;)

rjy = bry—ry;=>0b(x—x;)—(x; —x)

Iy = Tjg XTjp

Xy = x4 (4.160)
T

In this case the virtual site is at a distance of |c| from ¢, while a and b are parameters. Note
that the vectors r;; and r;; are not normalized to save floating-point operations. The force
on particles ¢, j, k and [ due to the force on the virtual site are computed through chain rule
derivatives of the construction expression. This is exact and conserves energy, but it does
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Figure 4.19: The new 4fdn virtual site construction, which is stable even when all constructing
atoms are in the same plane.

lead to relatively lengthy expressions that we do not include here (over 200 floating-point
operations). The interested reader can look at the source code in vsite.c. Fortunately,
this vsite type is normally only used for chiral centers such as C,, atoms in proteins.

The new 4fdn construct is identified with a ‘type’ value of 2 in the topology. The earlier
41d type is still supported internally (‘type’ value 1), but it should not be used for new
simulations. All current GROMACS tools will automatically generate type 4fdn instead.

N. A linear combination of N atoms with relative weights a;. The weight for atom 3 is:

N —1
w; = a; (Z aj) (4.161)
j=1

There are three options for setting the weights:

COG center of geometry: equal weights

COM center of mass: a; is the mass of atom 7; when in free-energy simulations the mass of
the atom is changed, only the mass of the A-state is used for the weight

COW center of weights: a; is defined by the user
4.8 Long Range Electrostatics

4.8.1 Ewald summation

The total electrostatic energy of N particles and their periodic images is given by

f Y& qig
V:§ZZZZZTU: (4.162)
j 2

Ng Ny Nz* 4§
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(N, ny,n>) = n is the box index vector, and the star indicates that terms with ¢ = j should be
omitted when (1, ny,n,) = (0,0,0). The distance r;; , is the real distance between the charges
and not the minimum-image. This sum is conditionally convergent, but very slow.

Ewald summation was first introduced as a method to calculate long-range interactions of the peri-
odic images in crystals [110]. The idea is to convert the single slowly-converging sum eqn. 4.162
into two quickly-converging terms and a constant term:

v - Vdir+vrec+vo (4.163)
Vi = 1 ZZZZ 4iq Jerfcf Tijn) (4.164)
1, Mo My Nz* t,n

exp (—(mm/B)? + 2mim - (r; — r;)
Viee = 2W Zqij DN — ) (4.165)

My My Mz*

1B
Vo = T ;qf, (4.166)

where [ is a parameter that determines the relative weight of the direct and reciprocal sums and
m = (my, my, m;). In this way we can use a short cut-off (of the order of 1 nm) in the direct
space sum and a short cut-off in the reciprocal space sum (e.g. 10 wave vectors in each direction).
Unfortunately, the computational cost of the reciprocal part of the sum increases as N2 (or N3/2
with a slightly better algorithm) and it is therefore not realistic for use in large systems.

Using Ewald

Don’t use Ewald unless you are absolutely sure this is what you want - for almost all cases the PME
method below will perform much better. If you still want to employ classical Ewald summation
enter this in your . mdp file, if the side of your box is about 3 nm:

coulombtype = Ewald
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.6
ewald-rtol = le-5

The ratio of the box dimensions and the fourierspacing parameter determines the highest
magnitude of wave vectors m,, m,, m. to use in each direction. With a 3-nm cubic box this ex-
ample would use 11 wave vectors (from —5 to 5) in each direction. The ewald-rtol parameter
is the relative strength of the electrostatic interaction at the cut-off. Decreasing this gives you a
more accurate direct sum, but a less accurate reciprocal sum.

4.8.2 PME

Particle-mesh Ewald is a method proposed by Tom Darden [14] to improve the performance of
the reciprocal sum. Instead of directly summing wave vectors, the charges are assigned to a grid
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using interpolation. The implementation in GROMACS uses cardinal B-spline interpolation [15],
which is referred to as smooth PME (SPME). The grid is then Fourier transformed with a 3D FFT
algorithm and the reciprocal energy term obtained by a single sum over the grid in k-space.

The potential at the grid points is calculated by inverse transformation, and by using the interpo-
lation factors we get the forces on each atom.

The PME algorithm scales as N log(/V), and is substantially faster than ordinary Ewald summa-
tion on medium to large systems. On very small systems it might still be better to use Ewald
to avoid the overhead in setting up grids and transforms. For the parallelization of PME see the
section on MPMD PME (3.17.5).

With the Verlet cut-off scheme, the PME direct space potential is shifted by a constant such that
the potential is zero at the cut-off. This shift is small and since the net system charge is close to
zero, the total shift is very small, unlike in the case of the Lennard-Jones potential where all shifts
add up. We apply the shift anyhow, such that the potential is the exact integral of the force.

Using PME

As an example for using Particle-mesh Ewald summation in GROMACS, specify the following
lines in your . mdp file:

coulombtype = PME
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme-order = 4

ewald-rtol = le-5

In this case the fourierspacing parameter determines the maximum spacing for the FFT grid
(i.e. minimum number of grid points), and pme—-order controls the interpolation order. Using
fourth-order (cubic) interpolation and this spacing should give electrostatic energies accurate to
about 5 - 1073, Since the Lennard-Jones energies are not this accurate it might even be possible to
increase this spacing slightly.

Pressure scaling works with PME, but be aware of the fact that anisotropic scaling can introduce
artificial ordering in some systems.

4.8.3 P3M-AD

The Particle-Particle Particle-Mesh methods of Hockney & Eastwood can also be applied in GRO-
MACS for the treatment of long range electrostatic interactions [111]. Although the P3M method
was the first efficient long-range electrostatics method for molecular simulation, the smooth PME
(SPME) method has largely replaced P3M as the method of choice in atomistic simulations. One
performance disadvantage of the original P3M method was that it required 3 3D-FFT back trans-
forms to obtain the forces on the particles. But this is not required for P3M and the forces can be
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derived through analytical differentiation of the potential, as done in PME. The resulting method is
termed P3M-AD. The only remaining difference between P3M-AD and PME is the optimization
of the lattice Green influence function for error minimization that P3M uses. However, in 2012
it has been shown that the SPME influence function can be modified to obtain P3M [112]. This
means that the advantage of error minimization in P3M-AD can be used at the same computational
cost and with the same code as PME, just by adding a few lines to modify the influence function.
However, at optimal parameter setting the effect of error minimization in P3M-AD is less than
10%. P3M-AD does show large accuracy gains with interlaced (also known as staggered) grids,
but that is not supported in GROMACS (yet).

P3M is used in GROMACS with exactly the same options as used with PME by selecting the
electrostatics type:

coulombtype P3M-AD

4.8.4 Optimizing Fourier transforms and PME calculations

It is recommended to optimize the parameters for calculation of electrostatic interaction such as
PME grid dimensions and cut-off radii. This is particularly relevant to do before launching long
production runs.

gmx mdrun will automatically do a lot of PME optimization, and GROMACS also includes a
special tool, gmx tune_pme, which automates the process of selecting the optimal number of
PME-only ranks.

4.9 Long Range Van der Waals interactions

4.9.1 Dispersion correction

In this section, we derive long-range corrections due to the use of a cut-off for Lennard-Jones
or Buckingham interactions. We assume that the cut-off is so long that the repulsion term can
safely be neglected, and therefore only the dispersion term is taken into account. Due to the
nature of the dispersion interaction (we are truncating a potential proportional to —r~%), energy
and pressure corrections are both negative. While the energy correction is usually small, it may be
important for free energy calculations where differences between two different Hamiltonians are
considered. In contrast, the pressure correction is very large and can not be neglected under any
circumstances where a correct pressure is required, especially for any NPT simulations. Although
it is, in principle, possible to parameterize a force field such that the pressure is close to the desired
experimental value without correction, such a method makes the parameterization dependent on
the cut-off and is therefore undesirable.

Energy

The long-range contribution of the dispersion interaction to the virial can be derived analytically, if
we assume a homogeneous system beyond the cut-off distance r.. The dispersion energy between
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two particles is written as:
Vi(ry) = —Cgri 0 (4.167)

ij
and the corresponding force is:
Fij = —6Csr;°ry; (4.168)

In a periodic system it is not easy to calculate the full potentials, so usually a cut-off is applied,
which can be abrupt or smooth. We will call the potential and force with cut-off V. and F'.. The
long-range contribution to the dispersion energy in a system with IV particles and particle density
p=N/V is:

Vie = 5Np [ 4mrg(r) (V () = Velr) dr (4.169)
2 0

We will integrate this for the shift function, which is the most general form of van der Waals
interaction available in GROMACS. The shift function has a constant difference S from 0 to 71
and is 0 beyond the cut-off distance r.. We can integrate eqn. 4.169, assuming that the density
in the sphere within r; is equal to the global density and the radial distribution function g(r) is 1
beyond r;:

1

Vi, = 5N (p/ ' 47rr29(r) Ce Sdr + p/ “drr? (V(r) = Ve(r))dr + p/ 472V (r) dr)
0 1 re

= %N ((gmf — 1) Cs S + ,0/ 4 (V(r) — Vi(r)) dr — ngp Cs rc3> (4.170)
T1

where the term —1 corrects for the self-interaction. For a plain cut-off we only need to assume
that g(r) is 1 beyond 7. and the correction reduces to [113]:
2 -3
Vir = —gﬂ'NpCG'I"C 4.171)
If we consider, for example, a box of pure water, simulated with a cut-off of 0.9 nm and a density
of 1 g cm~3 this correction is —0.75 kJ mol~! per molecule.

For a homogeneous mixture we need to define an average dispersion constant:

) N N
(Co) = mZZCﬁ(i,j) 4.172)

i g>i
In GROMACS, excluded pairs of atoms do not contribute to the average.

In the case of inhomogeneous simulation systems, e.g. a system with a lipid interface, the energy
correction can be applied if (Cg) for both components is comparable.

Virial and pressure

The scalar virial of the system due to the dispersion interaction between two particles ¢ and j is
given by:
1
= = —3Ti Fij = 3Cq ri;G (4.173)

The pressure is given by:

P = - (Ein—E) (4.174)

2
3V
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The long-range correction to the virial is given by:
Eir Np/ 4rrig(r)(E — o) dr (4.175)
We can again integrate the long-range contribution to the virial assuming g(7) is 1 beyond r:
= I e 20 = o 2 —6
Z» = =Np Arre(E — Z.) dr + drr 3 Cer;; dr
Te
Te
= —Np ( 4mr? (2 — ) dr + 4nC rg?’) (4.176)
For a plain cut-off the correction to the pressure is [113]:
4 2,.—3
P, = —§7rC'6 por, (4.177)

Using the same example of a water box, the correction to the virial is 0.75 kJ mol~! per molecule,
the corresponding correction to the pressure for SPC water is approximately —280 bar.

For homogeneous mixtures, we can again use the average dispersion constant (C) (eqn. 4.172):
P, = _fﬂ<c6.> 2p 3 (4.178)

For inhomogeneous systems, eqn. 4.178 can be applied under the same restriction as holds for the
energy (see sec. 4.9.1).

4.9.2 Lennard-Jones PME

In order to treat systems, using Lennard-Jones potentials, that are non-homogeneous outside of the
cut-off distance, we can instead use the Particle-mesh Ewald method as discussed for electrostatics
above. In this case the modified Ewald equations become

Vo= Viir + Viee + Vo (4.179)

Var = —72222 696”“‘ (4.180)

i,j Ma Ny Nz* TZ]a

Viee = WQﬂ ZZZ]“ mlm|/f5) x ZC’GeXp —2mim - (rj — ;)] (4.181)

Mg My Mz*

56 i
Vo = —E;C@- (4.182)

where m = (mg, my, m), 3 is the parameter determining the weight between direct and recipro-
cal space, and Cg is the combined dispersion parameter for particle i and j. The star indicates that
terms with ¢ = j should be omitted when ((n,, ny,n.) = (0,0,0)), and r;; 5, is the real distance
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between the particles. Following the derivation by Essmann [15], the functions f and g introduced
above are defined as

fl@) = 1/3|(1 - 20%)exp(—a?) + 20°V/7 exfe(x)] (4.183)
4
g(z) = exp(—z?)(1+2?+ ) (4.184)

The above methodology works fine as long as the dispersion parameters can be combined geomet-
rically (eqn. 4.6) in the same way as the charges for electrostatics

N 1/2
CG ,geom (Cél Céj) (4185)

For Lorentz-Berthelot combination rules (eqn. 4.7), the reciprocal part of this sum has to be cal-
culated seven times due to the splitting of the dispersion parameter according to

Ciy g = (0i+0))° ZPn no 0, (4.186)

for P, the Pascal triangle coefficients. This introduces a non-negligible cost to the reciprocal part,
requiring seven separate FFTs, and therefore this has been the limiting factor in previous attempts
to implement LJ-PME. A solution to this problem is to use geometrical combination rules in order
to calculate an approximate interaction parameter for the reciprocal part of the potential, yielding
a total interaction of

V(r<re) = C&mg(Br)ro+Cied 1 — g(Br)r™
—_———
Direct space Reciprocal space

_ Creclp 76 (Cdlr CTeCIP ) (ﬁT)T76 (4.187)

6 geom 6,geom

Vir>r) = Cieb [1—g(Br)r°. (4.188)

6,geom

Reciprocal space

This will preserve a well-defined Hamiltonian and significantly increase the performance of the
simulations. The approximation does introduce some errors, but since the difference is located in
the interactions calculated in reciprocal space, the effect will be very small compared to the total
interaction energy. In a simulation of a lipid bilayer, using a cut-off of 1.0 nm, the relative error
in total dispersion energy was below 0.5%. A more thorough discussion of this can be found in
[114].

In GROMACS we now perform the proper calculation of this interaction by subtracting, from the
direct-space interactions, the contribution made by the approximate potential that is used in the
reciprocal part

Vair = CIxp=6 — CEP[1 — g(Br)]r . (4.189)

This potential will reduce to the expression in eqn. 4.180 when C§* = C5°P, and the total
interaction is given by

Vir<r) = C§"r®— Gy — g(Br)lr ®+ CgP[1 — g(8r)])r"
Direct space Reciprocal space
_ (ding6 (4.190)
Vir>re) = CEP—g(Br))r . (4.191)
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For the case when C{* # C5°“P this will retain an unmodified LJ force up to the cut-off, and
the error is an order of magnitude smaller than in simulations where the direct-space interactions
do not account for the approximation used in reciprocal space. When using a VAW interaction
modifier of potential-shift, the constant

(—C8" + gL~ g(Bro)]) v (4.192)

is added to eqn. 4.190 in order to ensure that the potential is continuous at the cutoff. Note
that, in the same way as eqn. 4.189, this degenerates into the expected —Csg(fSrc)r, 6 when
Cdir = Cg°°P. In addition to this, a long-range dispersion correction can be applied to correct for
the approximation using a combination rule in reciprocal space. This correction assumes, as for
the cut-off LJ potential, a uniform particle distribution. But since the error of the combination rule
approximation is very small this long-range correction is not necessary in most cases. Also note
that this homogenous correction does not correct the surface tension, which is an inhomogeneous

property.

Using LJ-PME

As an example for using Particle-mesh Ewald summation for Lennard-Jones interactions in GRO-
MACS, specify the following lines in your . mdp file:

vdwtype = PME

rvdw = 0.9
vdw-modifier = Potential-Shift
rlist = 0.9

rcoulomb = 0.9
fourierspacing = 0.12

pme—-order =4

ewald-rtol-17j = 0.001
lj-pme—-comb-rule = geometric

The same Fourier grid and interpolation order are used if both LJ-PME and electrostatic PME are

active, so the settings for fourierspacingand pme—-order are common to both. ewald-rtol-17j
controls the splitting between direct and reciprocal space in the same way as ewald—-rtol. In ad-

dition to this, the combination rule to be used in reciprocal space is determined by 1 j—pme—comb-rule.

If the current force field uses Lorentz-Berthelot combination rules, it is possible to set 1 J—pme—-comb-rule
= geometric in order to gain a significant increase in performance for a small loss in accuracy.

The details of this approximation can be found in the section above.

Note that the use of a complete long-range dispersion correction means that as with Coulomb
PME, rvdw is now a free parameter in the method, rather than being necessarily restricted by the
force-field parameterization scheme. Thus it is now possible to optimize the cutoff, spacing, order
and tolerance terms for accuracy and best performance.

Naturally, the use of LJ-PME rather than LJ cut-off adds computation and communication done
for the reciprocal-space part, so for best performance in balancing the load of parallel simulations
using PME-only ranks, more such ranks should be used. It may be possible to improve upon the
automatic load-balancing used by mdrun.
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4.10 Force field

A force field is built up from two distinct components:

o The set of equations (called the potential functions) used to generate the potential energies
and their derivatives, the forces. These are described in detail in the previous chapter.

e The parameters used in this set of equations. These are not given in this manual, but in the
data files corresponding to your GROMACS distribution.

Within one set of equations various sets of parameters can be used. Care must be taken that the
combination of equations and parameters form a consistent set. It is in general dangerous to make
ad hoc changes in a subset of parameters, because the various contributions to the total force are
usually interdependent. This means in principle that every change should be documented, verified
by comparison to experimental data and published in a peer-reviewed journal before it can be used.

GROMACS 2018.8 includes several force fields, and additional ones are available on the website.
If you do not know which one to select we recommend GROMOS-96 for united-atom setups and
OPLS-AA/L for all-atom parameters. That said, we describe the available options in some detail.

All-hydrogen force field

The GROMOS-87-based all-hydrogen force field is almost identical to the normal GROMOS-87
force field, since the extra hydrogens have no Lennard-Jones interaction and zero charge. The
only differences are in the bond angle and improper dihedral angle terms. This force field is only
useful when you need the exact hydrogen positions, for instance for distance restraints derived
from NMR measurements. When citing this force field please read the previous paragraph.

4.10.1 GROMOS-96

GROMACS supports the GROMOS-96 force fields [82]. All parameters for the 43A1, 43A2
(development, improved alkane dihedrals), 45A3, 53AS5, and 53A6 parameter sets are included.
All standard building blocks are included and topologies can be built automatically by pdb2gmx.

The GROMOS-96 force field is a further development of the GROMOS-87 force field. It has
improvements over the GROMOS-87 force field for proteins and small molecules. Note that
the sugar parameters present in 53A6 do correspond to those published in 2004[115], which are
different from those present in 45A4, which is not included in GROMACS at this time. The 45A4
parameter set corresponds to a later revision of these parameters. The GROMOS-96 force field is
not, however, recommended for use with long alkanes and lipids. The GROMOS-96 force field
differs from the GROMOS-87 force field in a few respects:

o the force field parameters
o the parameters for the bonded interactions are not linked to atom types

e a fourth power bond stretching potential (4.2.1)
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e an angle potential based on the cosine of the angle (4.2.6)

There are two differences in implementation between GROMACS and GROMOS-96 which can
lead to slightly different results when simulating the same system with both packages:

e in GROMOS-96 neighbor searching for solvents is performed on the first atom of the solvent
molecule. This is not implemented in GROMACS, but the difference with searching by
centers of charge groups is very small

e the virial in GROMOS-96 is molecule-based. This is not implemented in GROMACS,
which uses atomic virials

The GROMOS-96 force field was parameterized with a Lennard-Jones cut-off of 1.4 nm, so be
sure to use a Lennard-Jones cut-off (rvdw) of at least 1.4. A larger cut-off is possible because the
Lennard-Jones potential and forces are almost zero beyond 1.4 nm.

GROMOS-96 files
GROMACS can read and write GROMOS-96 coordinate and trajectory files. These files should
have the extension .g96. Such a file can be a GROMOS-96 initial/final configuration file, a
coordinate trajectory file, or a combination of both. The file is fixed format; all floats are written
as 15.9, and as such, files can get huge. GROMACS supports the following data blocks in the
given order:

e Header block:

TITLE (mandatory)

e Frame blocks:

TIMESTEP (optional)
POSITION/POSITIONRED (mandatory)
VELOCITY/VELOCITYRED (optional)
BOX (optional)

See the GROMOS-96 manual [82] for a complete description of the blocks. Note that all GRO-
MACS programs can read compressed (.Z) or gzipped (.gz) files.

4.10.2 OPLS/AA
4.10.3 AMBER

GROMACS provides native support for the following AMBER force fields:

e AMBERY4 [116]
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e AMBERY6 [117]

e AMBERY9 [118]

e AMBER99SB [119]

o AMBER99SB-ILDN [120]
e AMBERO3 [121]

e AMBERGS [122]

4.10.4 CHARMM

GROMACS supports the CHARMM force field for proteins [123, 124], lipids [125] and nucleic
acids [126, 127]. The protein parameters (and to some extent the lipid and nucleic acid parameters)
were thoroughly tested — both by comparing potential energies between the port and the standard
parameter set in the CHARMM molecular simulation package, as well by how the protein force
field behaves together with GROMACS-specific techniques such as virtual sites (enabling long
time steps) and a fast implicit solvent recently implemented [74] — and the details and results are
presented in the paper by Bjelkmar et al. [128]. The nucleic acid parameters, as well as the ones
for HEME, were converted and tested by Michel Cuendet.

When selecting the CHARMM force field in pdb2gmx the default option is to use CMAP (for
torsional correction map). To exclude CMAP, use —nocmap. The basic form of the CMAP term
implemented in GROMACS is a function of the ¢ and 1) backbone torsion angles. This term is
defined inthe . rtp filebya [ cmap ] statement at the end of each residue supporting CMAP.
The following five atom names define the two torsional angles. Atoms 1-4 define ¢, and atoms
2-5 define 1. The corresponding atom types are then matched to the correct CMAP type in the
cmap . itp file that contains the correction maps.

A port of the CHARMM36 force field for use with GROMACS is also available at http://
mackerell.umaryland.edu/charmm_ff.shtml#gromacs.

For branched polymers or other topologies not supported by pdb2gmx, it is possible to use Topo-
Tools [129] to generate a GROMACS top file.

4.10.5 Coarse-grained force fields

Coarse-graining is a systematic way of reducing the number of degrees of freedom representing
a system of interest. To achieve this, typically whole groups of atoms are represented by single
beads and the coarse-grained force fields describes their effective interactions. Depending on the
choice of parameterization, the functional form of such an interaction can be complicated and
often tabulated potentials are used.

Coarse-grained models are designed to reproduce certain properties of a reference system. This
can be either a full atomistic model or even experimental data. Depending on the properties to
reproduce there are different methods to derive such force fields. An incomplete list of methods is
given below:
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e Conserving free energies

— Simplex method
— MARTINI force field (see next section)
e Conserving distributions (like the radial distribution function), so-called structure-based
coarse-graining
— (iterative) Boltzmann inversion

— Inverse Monte Carlo
e Conversing forces

— Force matching

Note that coarse-grained potentials are state dependent (e.g. temperature, density,...) and should
be re-parametrized depending on the system of interest and the simulation conditions. This can
for example be done using the Versatile Object-oriented Toolkit for Coarse-Graining Applications
(VOTCA) [130]. The package was designed to assists in systematic coarse-graining, provides
implementations for most of the algorithms mentioned above and has a well tested interface to
GROMACS. It is available as open source and further information can be found at www.votca.org.

4.10.6 MARTINI

The MARTINI force field is a coarse-grain parameter set that allows for the construction of many
systems, including proteins and membranes.

4.10.7 PLUM

The PLUM force field [131] is an example of a solvent-free protein-membrane model for which
the membrane was derived from structure-based coarse-graining [132]. A GROMACS implemen-
tation can be found at code.google.com/p/plumx.
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Chapter 5
Topologies

5.1 Introduction

GROMACS must know on which atoms and combinations of atoms the various contributions to
the potential functions (see chapter 4) must act. It must also know what parameters must be
applied to the various functions. All this is described in the topology file * . t op, which lists the
constant attributes of each atom. There are many more atom types than elements, but only atom
types present in biological systems are parameterized in the force field, plus some metals, ions and
silicon. The bonded and special interactions are determined by fixed lists that are included in the
topology file. Certain non-bonded interactions must be excluded (first and second neighbors), as
these are already treated in bonded interactions. In addition, there are dynamic attributes of atoms
- their positions, velocities and forces. These do not strictly belong to the molecular topology,
and are stored in the coordinate file = . gro (positions and velocities), or trajectory file «.trr
(positions, velocities, forces).

This chapter describes the setup of the topology file, the » . top file and the database files: what
the parameters stand for and how/where to change them if needed. First, all file formats are
explained. Section 5.9.1 describes the organization of the files in each force field.

Note: if you construct your own topologies, we encourage you to upload them to our topology
archive at www.gromacs.org! Just imagine how thankful you’d have been if your topology had
been available there before you started. The same goes for new force fields or modified versions
of the standard force fields - contribute them to the force field archive!

5.2 Particle type

In GROMACS, there are three types of particles, see Table 5.1. Only regular atoms and virtual
interaction sites are used in GROMACS; shells are necessary for polarizable models like the Shell-
Water models [45].
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Particle Symbol
atoms A
shells S
virtual interaction sites | V (or D)

Table 5.1: Particle types in GROMACS

5.2.1 Atom types

Each force field defines a set of atom types, which have a characteristic name or number, and mass
(in a.m.u.). These listings are found in the atomtypes.atp file (.atp = atom type parameter
file). Therefore, it is in this file that you can begin to change and/or add an atom type. A sample
from the gromos43al. ff force field is listed below.

O 15.99940 ; carbonyl oxygen (C=0)

OM 15.99940 ; carboxyl oxygen (CO-)

OA 15.99940 ; hydroxyl, sugar or ester oxygen
Ow 15.99940 ; water oxygen

N 14.00670 ; peptide nitrogen (N or NH)
NT 14.00670 ; terminal nitrogen (NH2)
NL 14.00670 ; terminal nitrogen (NH3)

NR 14.00670 ; aromatic nitrogen

Nz 14.00670 ; Arg NH (NH2)

NE 14.00670 ; Arg NE (NH)

C 12.01100 ; bare carbon
CH1 13.01900 ; aliphatic or sugar CH-group
CH2 14.02700 ; aliphatic or sugar CH2-group
CH3 15.03500 ; aliphatic CH3-group

Note: GROMACS makes use of the atom types as a name, not as a number (as e.g. in GROMOS).

5.2.2 \Virtual sites

Some force fields use virtual interaction sites (interaction sites that are constructed from other
particle positions) on which certain interactions are located (e.g. on benzene rings, to reproduce
the correct quadrupole). This is described in sec. 4.7.

To make virtual sites in your system, you should include a section [ virtual_sites? ] (for
backward compatibility the old name [ dummies? ] can also be used) in your topology file,
where the ‘2’ stands for the number constructing particles for the virtual site. This will be ‘2’ for
type 2, ‘3’ for types 3, 3fd, 3fad and 3out and ‘4’ for type 4fdn. The last of these replace an older
4fd type (with the ‘type’ value 1) that could occasionally be unstable; while it is still supported
internally in the code, the old 4fd type should not be used in new input files. The different types
are explained in sec. 4.7.

Parameters for type 2 should look like this:

[ virtual_sites2 ]
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; Site from funct a
5 1 2 1 0.7439756

for type 3 like this:

[ virtual_sites3 ]

; Site from funct a b

5 1 2 3 1 0.7439756 0.128012

for type 3fd like this:

[ virtual_sites3 ]

; Site from funct a d

5 1 2 3 2 0.5 -0.105

for type 3fad like this:

[ virtual_sites3 ]

; Site from funct theta d

5 1 2 3 3 120 0.5

for type 3out like this:

[ virtual_sites3 ]

; Site from funct a b c

5 1 2 3 4 -0.4 -0.4 6.9281
for type 4fdn like this:

[ virtual_sitesd ]

; Site from funct a b c
5 1 2 3 4 2 1.0 0.9 0.105

This will result in the construction of a virtual site, number 5 (first column ‘Site’), based on the
positions of the atoms whose indices are 1 and 2 or 1, 2 and 3 or 1, 2, 3 and 4 (next two, three
or four columns ‘from’) following the rules determined by the function number (next column
‘funct’) with the parameters specified (last one, two or three columns ‘a b . ."). Obviously,
the atom numbers (including virtual site number) depend on the molecule. It may be instructive
to study the topologies for TIP4P or TIPSP water models that are included with the GROMACS
distribution.

Note that if any constant bonded interactions are defined between virtual sites and/or normal
atoms, they will be removed by grompp (unless the option tt -normvsbds is used). This re-
moval of bonded interactions is done after generating exclusions, as the generation of exclusions
is based on “chemically” bonded interactions.

Virtual sites can be constructed in a more generic way using basic geometric parameters. The di-
rective that canbe usedis [ virtual_sitesn ].Required parameters are listed in Table 5.5.
An example entry for defining a virtual site at the center of geometry of a given set of atoms might
be:

[ virtual_sitesn ]
; Site funct from
5 1 1 2 3 4
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Property | Symbol Unit
Type - -
Mass m am.u.
Charge q electron
epsilon € kJ/mol
sigma o nm

Table 5.2: Static atom type properties in GROMACS
5.3 Parameter files

5.3.1 Atoms

The static properties (see Table 5.2 assigned to the atom types are assigned based on data in several
places. The mass is listed in atomt ypes . atp (see 5.2.1), whereas the charge is listed in * . rtp
(.rtp = residue topology parameter file, see 5.7.1). This implies that the charges are only defined
in the building blocks of amino acids, nucleic acids or otherwise, as defined by the user. When
generating a topology (. top) using the pdb2gmx program, the information from these files is
combined.

5.3.2 Non-bonded parameters

The non-bonded parameters consist of the van der Waals parameters V (c6 or o, depending on the
combination rule) and W (c12 or €), as listed in the file ffnonbonded. itp, where ptype is
the particle type (see Table 5.1). As with the bonded parameters, entriesin [ *type ] directives
are applied to their counterparts in the topology file. Missing parameters generate warnings, except
as noted below in section 5.4.3.

[ atomtypes ]

;name at.num mass charge ptype V(c6) W(cl2)
0 8 15.99940 0.000 A 0.22617E-02 0.74158E-06
OM 8 15.99940 0.000 A 0.22617E-02 0.74158E-06

[ nonbond_params ]

;i 3 func V(co6) W(cl2)
0 0 1 0.22617E-02 0.74158E-06
0 OA 1 0.22617E-02 0.13807E-05

Note that most of the included force fields also include the at .num. column, but this same in-
formation is implied in the OPLS-AA bond_type column. The interpretation of the parameters
V and W depends on the combination rule that was chosen in the [ defaults ] section of the
topology file (see 5.8.1):

Vi = c® = 4@0? [ kJ mol~! nmb ]

5.1
Wi = Ci(u) = 4deo}? [kImol™! nle]( )

for combination rule 1 :
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Vi = o; [nm]

Wi = ¢ [kIimol™'] (5.2)

for combination rules 2 and 3 :

Some or all combinations for different atom types can be given in the [ nonbond_params ]
section, again with parameters V and W as defined above. Any combination that is not given will
be computed from the parameters for the corresponding atom types, according to the combination
rule:

y o = ()t
for combination rules 1 and 3 : 12 (12) (12 1 (5.3)
2
oij = %(ai +0;j)

for combination rule 2 : 5.4)

When o and € need to be supplied (rules 2 and 3), it would seem it is impossible to have a non-zero
C12 combined with a zero C'% parameter. However, providing a negative o will do exactly that,
such that C is set to zero and C''? is calculated normally. This situation represents a special case
in reading the value of o, and nothing more.

There is only one set of combination rules for Buckingham potentials:

Aij = (A A"
By = 2/(4+4) (5.5)
Ciy = (CaCyy)')*

5.3.3 Bonded parameters

The bonded parameters (i.e. bonds, bond angles, improper and proper dihedrals) are listed in
ffbonded.itp. The entries in this database describe, respectively, the atom types in the in-
teractions, the type of the interaction, and the parameters associated with that interaction. These
parameters are then read by grompp when processing a topology and applied to the relevant
bonded parameters, i.e. bondtypes are applied to entries in the [ bonds ] directive, etc.
Any bonded parameter that is missing from the relevant [ «type ] directive generates a fatal
error. The types of interactions are listed in Table 5.5. Example excerpts from such files follow:

[ bondtypes ]
;o1 j func b0 kb
C 0 1 0.12300 502080.
C OM 1 0.12500 418400.
[ angletypes ]
;o1 J k func thO cth
HO OA C 1 109.500 397.480
HO OA CHI1 1 109.500 397.480

[ dihedraltypes ]
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;o1 1 func e fl) cq
NR5* NR5 2 0.000 167.360
NR5* NR5* 2 0.000 167.360
[ dihedraltypes ]
HE k func phi0 cp mult
C OA 1 180.000 16.736 2
C N 1 180.000 33.472 2
[ dihedraltypes ]

; Ryckaert-Bellemans Dihedrals
;oaj ak funct
Cp2 Cp2 3 9.2789 12.156 -13.120 -3.0597 26.240 -31.495

In the ffbonded. itp file, you can add bonded parameters. If you want to include parameters
for new atom types, make sure you define them in atomtypes.atp as well.

For most interaction types, bonded parameters are searched and assigned using an exact match for
all type names and allowing only a single set of parameters. The exception to this rule are dih