\newpsobject{usergrid}{psgrid}{subgriddiv=1,griddots=10,gridlabels=7pt} \catcode`\_=8 \catcode`\<=13 \def\CurrentPackages{spqr,pstcol} \newcounter{myN} \setlongtables \author[Sebastian Rahtz]{Sebastian Rahtz\\Elsevier Science Ltd\\ Email: \texttt{s.rahtz@elsevier.co.uk}} \title{An introduction to PSTricks, part 2} \begin{Article} \section{Introduction} In the first part of this description of \PST, we looked at the basic concepts of the package, a series of low-level building blocks, and the useful commands for dealing with text and the third dimension. Now it is time to look at the higher-level packages built in \PST, for drawing trees and graphs. There are a wide variety of applications, as I hope the examples show. This part of the package is, unfortunately, extremely rich, and readers should not be surprised if they find the plethora of new commands rather confusing. %--------------------------- \section{Nodes and their connections, and trees} \PST\ offers sophisticated macros for setting up named nodes and joining them together in complicated ways, complete with labels. The nodes can be created in three ways: \begin{enumerate} \item By placing them at arbitrary coordinates \item By placing them on a regular grid or matrix \item By using higher-level tree macros \end{enumerate} The sort of effect we will create is like this: \begin{GridPSExample}(0,0)(5,5) \rput(1,1){\rnode{A}{Dog}} \rput(2,4){\rnode{B}{Cat}} \rput(4,2){\rnode{C}{Mouse}} \ncline{A}{B} \nccurve[linestyle=dotted]{A}{B} \ncarc[linestyle=dashed]{A}{B} \end{GridPSExample} Every node is given a symbolic name, which is used for node connectors (lines, curves and so on), and for node labels. The fact that nodes can occur \emph{anywhere} (such as in running text), makes it possible to use them for surprising effects like linking two words \rnode{n1}{one} to \rnode{n2}{another}\nccurve{n1}{n2}. When considering connectors, we have to distinguish between the position of the node they are pointing \emph{towards} (the node reference point), and the actual extent of the connector. Most node creators have an invisible box around them, which determines the end of connector lines. We will first list all the commands, and then give practical examples. Table~\ref{PSTnode} lists all the node creation commands and node connector commands, Table~\ref{PSTnodelab} lists the commands to label connectors and nodes, and Table~\ref{PSTnodeparm} lists the extra graphical parameters which apply to node connectors. %\end{multicols} \begin{longtable}{lH{8.5cm}} \caption{\protect\PST\ node drawing commands\label{PSTnode}}\\ \hline \endfirsthead \protect\PST\ node drawing commands \emph{cont.}\\ \hline \endhead \multicolumn{2}{l}{\bfseries\itshape Node creators} \\ \PSTCom \rnode`[refpoint]'{name}{text} & create a node called \emph{name}, consisting of \emph{text}; connectors point to the \emph{refpoint} \\ \PSTCom \Rnode`\c~'{name}{text} & the same as \Lcs{rnode}, but the reference point is the middle of the box's baseline, plus \c~{} \\ \PSTCom \pnode`\c~'{name} & create a node at \c, which takes up no space \\ \PSTComOpt \cnode`\c~'{radius}{name} & create a node consisting of circle of \emph{radius} \\ \PSTComOpt \Cnode`\c~'{name} & create a node consisting of circle, using the radius set by the \emph{radius} graphical parameter (it is sometimes useful to set the radius for many circles) \\ \PSTComOpt \cnodeput`{angle}\c~'{name}{text} \\ \PSTComOpt \circlenode{name}{text} & like \Lcs{pscirclebox}, but makes a node \\ \PSTComOpt \ovalnode{name}{text} & like \Lcs{psovalbox}, but makes a node \\ \PSTComOpt \dianode{name}{text} & like \Lcs{diabox}, but makes a node \\ \PSTComOpt \dotnode`\c~'{name}{text} & like \Lcs{psdot}, but makes a node \\ \PSTComOpt \fnode`\c~'{name}{text} & like \Lcs{psframe}, but makes a node \\ \PSTComOpt \trinode{name}{text} & like \Lcs{tribox}, but makes a node \\ [6pt] \multicolumn{2}{l}{\bfseries\itshape Node connectors} \\ \PSTComOpt \ncline`{arrows}'{firstnode}{secondnode} & straight line between nodes \\ \PSTComOpt \ncLine`{arrows}'{firstnode}{secondnode} & straight line between nodes, but labels are placed as if the line went right to the center of the nodes \\ \PSTComOpt \ncarc`{arrows}'{firstnode}{secondnode} & arc between nodes; uses parameter \emph{arcangle} \\ \PSTComOpt \ncdiag`{arrows}'{firstnode}{secondnode} & using the \emph{arm} and \emph{angle} parameters, `arms' start out from each node and are then joined by a line; corner shape is controlled by the \emph{linearc} parameter \\ \PSTComOpt \ncdiagg`{arrows}'{firstnode}{secondnode} & as \Lcs{ncdiag}, but the second arm is not drawn \\ \PSTComOpt \ncbar`{arrows}'{firstnode}{secondnode} & a line is drawn with arms coming off at a right angle to the nodes, at an angle of \emph{angleA}; the arm length is adjusted if necessary \\ \PSTComOpt \ncangle`{arrows}'{firstnode}{secondnode} & draws a connect line \Lcs{ncdiag}, but the angle between arm A and the connector line is forced to a right angle \\ \PSTComOpt \ncangles`{arrows}'{firstnode}{secondnode} & like \Lcs{ncangle}, but arm A is joined to arm B by two line segments that meet at a right angle \\ \PSTComOpt \ncloop`{arrows}'{firstnode}{secondnode} & like \Lcs{ncangles} but 5 line segments are used, the second and forth being \emph{loopsize} long \\ \PSTComOpt \nccurve`{arrows}'{firstnode}{secondnode} & bezier curve between nodes, using the \emph{ncurv} parameters to determine the control point positions \\ \PSTComOpt \nccircle`{arrows}'{node}{radius} & draws a circle or part circle of radius \emph{radius} connecting the node to itself \\[6pt] \multicolumn{2}{l}{\bfseries\itshape Coil and zigzag node connectors} \\ \PSTCom \nccoil`*[settings]{arrows}'{firstnode}{secondnode} \\ \PSTCom \nczigzag`*[settings]{arrows}'{firstnode}{secondnode} \end{longtable} \begin{longtable}{llH{.4\textwidth}} \caption{\protect\PST\ Graphical parameters for node connectors} \label{PSTnodeparm}\\[1mm] \emph{Parameter} & \emph{Default} & \emph{Explanation}\\ \hline \endfirsthead \protect\PST\ Graphical parameters for node connectors \emph{cont.}\\[1mm] \emph{Parameter} & \emph{Default} & \emph{Explanation}\\ \hline \endhead \mbox{}\\ \endfoot \Par{offset=dim} (0pt) & the offset of the connection point to a node\\ \Par{nodesep=dim} (0pt) &the border around nodes at which connectors stop \\ \Par{nodesepA=dim} (0pt) &the border around the first node \\ \Par{nodesepB=dim} (0pt) &the border around the second node \\ \Par{arcangle=angle} (8) &in \Lcs{ncarc}, the angle between the arc and a straight line drawn between the nodes \\ \Par{angle=angle} (0) &the angle at which connectors hit the nodes \\ \Par{angleA=angle} (0) &the angle at which a connector hits the first node \\ \Par{angleB=angle} (0) &the angle at which a connector hits the second node \\ \Par{arm=dim} (10pt) &the length of the line segment where the connector joins the nodes \\ \Par{armA=dim} (10pt) &the length of the line segment where the connector joins the first node \\ \Par{armB=dim} (10pt) &the length of the line segment where the connector joins the second node \\ \Par{loopsize=dim} (1cm) & the length of line segments for \Lcs{ncloop} \\ \Par{ncurv=num} (0.67) & the distance to Bezier control points in \Lcs{nccurve}; lower values give tighter curves; the distance from the node to the first control point is half \emph{ncurv} $\times$ the distance between the two end points\\ \Par{ncurvA=num} (0.67) & as \emph{ncurv} but for first node only \\ \Par{ncurvB=num} (0.67) & as \emph{ncurv} but for second node only \\ \Par{boxsize=dim} (0.4cm) & half the width of the enclosing box of \Lcs{ncbox} and \Lcs{ncarcbox} \\[6pt] \multicolumn{3}{l}{\bfseries\itshape Parameters for node labels}\\ \Par{ref=ref} (c) & sets the reference point for labels\\ \Par{nrot=rot} (0) & the rotation of label text; if the angle is preceded by :, it is measured with respect to the connector line; the letter abbreviations we have already seen are available, so :U is commonly used to align text on the connector line\\ \Par{npos=num} () & the position along the length of the connector line where a label is placed; each connector line has one or more segments, and the value of \emph{npos}+1 determines the segment on which the label is set; the default values for this parameter are given in the \protect\PST\ manual, but can also be seen in the examples below\\ \Par{shortput=none/nab/tablr/tab} (none) & determines whether short codes are available for labelling connectors; see page~\pageref{shortput}.\\ \Par{tpos=num} (0.5) & the proportion of the distance between nodes at which labels are placed on a connector\\ \Par{mnode=type} (R) & (for matrices) the default node type; possibilities are R (\Lcs{Rnode}), r (\Lcs{rnode}), C (\Lcs{Cnode}), f (\Lcs{fnode}), p (\Lcs{pnode}), circle (\Lcs{circlenode}), oval (\Lcs{ovalnode}), dia (\Lcs{dianode}), tri (\Lcs{trinode}), dot (\Lcs{dotnote}), and none\\ \Par{emnode=type} (none) & (for matrices) the type of node created for empty cells in a matrix\\ \Par{name=name} () & (for matrices) the name of a node; parameters like this can set in square brackets in the cell\\ \Par{nodealign=true/false} (false) & (for matrices) whether baselines of nodes pass through the centre of nodes\\ \Par{mcol=l/r/c} (c) & (for matrices) the alignment of a node within a matrix cell\\ \Par{mnodesize=dim} ($-1$pt) & (for matrices) is positive, nodes are forced to be this size\\ \Par{rowsep=dim} (1.5cm) & (for matrices) the gap between rows \\ \Par{colsep=dim} (1.5cm) & (for matrices) the gap between columns \\ \end{longtable} \begin{longtable}{lH{10cm}} \caption{\protect\PST\ node connection labelling commands}\label{PSTnodelab}\\ \hline \endfirsthead \protect\PST\ node connection labelling commands \emph{cont.}\\ \hline \endhead \multicolumn{2}{l}{\bfseries\itshape Labelling based on connector length}\\ \PSTComOpt \ncput {something} & place \emph{something} on the connector line\\ \PSTComOpt \naput {something} & place \emph{something} above the connector line\\ \PSTComOpt \nbput {something} & place \emph{something} under the connector line\\[6pt] \multicolumn{2}{l}{\bfseries\itshape Labelling based on distance between nodes}\\ \PSTComOpt \tvput {something} & working on the vertical distance between nodes, place \emph{something} in the middle of the line\\ \PSTComOpt \tlput {something} & working on the vertical distance between nodes, place \emph{something} to the left of the line\\ \PSTComOpt \trput {something} & working on the vertical distance between nodes, place \emph{something} to the right of the line\\ \PSTComOpt \thput{something} & working on the horizontal distance between nodes, place \emph{something} in the middle of the line\\ \PSTComOpt \taput{something} & working on the horizontal distance between nodes, place \emph{something} above the line\\ \PSTComOpt \tbput{something} & working on the horizontal distance between nodes, place \emph{something} below the line\\[6pt] \multicolumn{2}{l}{\bfseries\itshape Labelling nodes}\\ \PSTCom`[par]'{angle}{name}{something} & place \emph{something} next to the node, at a distance of \emph{nodesep}, in the direction \emph{angle} from the centre of the node \end{longtable} %\begin{multicols}{2} \begin{table*} \caption{\protect\PST\ drawing commands comparable to node connectors} \label{PSTcondraw} \begin{tabular}{l} \PSTComOpt \pcline`{arrows}'\c1\c2 \\ \PSTComOpt \pccurve`{arrows}'\c1\c2 \\ \PSTComOpt \pcarc`{arrows}'\c1\c2 \\ \PSTComOpt \pcbar`{arrows}'\c1\c2 \\ \PSTComOpt \pcdiag`{arrows}'\c1\c2 \\ \PSTComOpt \pcangle`{arrows}'\c1\c2 \\ \PSTComOpt \pcloop`{arrows}'\c1\c2 \\ \PSTCom \pczigzag`*[settings]{arrows}'\c1\c2 \\ \PSTCom \pccoil`*[settings]{arrows}'\c1\c2 \end{tabular} \end{table*} There are several important concepts we need to bear in mind when looking at the myriad of node and connector commands: \begin{enumerate} \item When joining two nodes with something like a curve, the connectors comes in by default on the right hand side of the object (at 0 degrees). If we have two boxes side by side, the \emph{angleB} parameter has to be set to 180 if we want the connector to come into the second box on its left side. This may seem cumbersome at first, but it makes for a flexible system; \item the connector labelling commands all place the label some proportion of the way along the connector, but they distinguish between the distance between nodes, and the length of the line. The former situation applies to constructions like matrices, where we want the label positions to be constant, regardless of the size of the nodes. \item The node connectors are not drawn directly in \TeX, but are done at the PostScript level; this means that \TeX\ is not always quite sure how much space will be taken up by the object. Particularly when curving connectors are drawn, you might find that they protrude outside the area allowed by \TeX --- adjust by hand. \end{enumerate} \label{shortput} Because labelling node connectors is a very common thing to do, a short cut is provided to save all the \Lcs{naput} commands etc. If the parameter \emph{shortput} is set to \texttt{nab}, the \verb|^| is used instead of \Lcs{naput} and \verb|_| instead of \Lcs{nbput}. If it is set to \texttt{tablr}, the \verb|^| stands for \Lcs{taput}, \verb|_| for \Lcs{tbput}, \verb|<| for \Lcs{tlput} and \verb|>| for \Lcs{trput}. If all this were not enough, all the node connectors can also be used as ordinary drawing tools, by using the commands listed in Table~\ref{PSTcondraw}, where the `pc' version corresponds to the `nc' node connector. Let us first demonstrate the effects of these basic building blocks: %\end{multicols} \begin{longtable}{l} \begin{PSTInlineExample}(3,1) \rput(.5,.5){\rnode{A}{Cat}} \rput(2.5,.5){\rnode{B}{Dog}} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\Rnode{A}{Cat}} \rput(2.5,.5){\Rnode{B}{Dog}} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \pnode(.5,.5){A} \pnode(2.5,.5){B} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \cnode(.5,.5){.2}{A} \cnode(2.5,.5){.2}{B} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \psset{radius=.3} \Cnode(.5,.5){A} \Cnode(2.5,.5){B} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\circlenode{A}{Cat}} \rput(2.5,.5){\circlenode{B}{Dog}} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\ovalnode{A}{Cat}} \rput(2.5,.5){\ovalnode{B}{Dog}} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\trinode{A}{Cat}} \rput(2.5,.5){\trinode{B}{Dog}} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \dotnode(.5,.5){A} \dotnode(2.5,.5){B} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \fnode(.5,.5){A} \fnode(2.5,.5){B} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\dianode{A}{Cat}} \rput(2.5,.5){\dianode{B}{Dog}} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,.5){\rnode{B}{\psframebox{Dog}}} \ncline{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,2) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,1.5){\rnode{B}{\psframebox{Dog}}} \nccurve[angleB=180]{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,.5){\rnode{B}{\psframebox{Dog}}} \ncarc{->}{A}{B} \ncarc{->}{B}{A} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,2) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,1.5){\rnode{B}{\psframebox{Dog}}} \ncbar{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,2) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,1.5){\rnode{B}{\psframebox{Dog}}} \ncdiag[angleB=180]{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,2) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,1.5){\rnode{B}{\psframebox{Dog}}} \ncdiagg[angleB=180]{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,2) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,1.5){\rnode{B}{\psframebox{Dog}}} \ncangle[angleB=180]{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,2) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,1.5){\rnode{B}{\psframebox{Dog}}} \ncangles[angleB=180]{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,2) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,1.5){\rnode{B}{\psframebox{Dog}}} \ncloop[loopsize=.25,angleB=180]{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,2) \rput(1,.5){\rnode{A}{\psframebox{Cat}}} \nccircle{->}{A}{.5} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,.5){\rnode{B}{\psframebox{Dog}}} \psset{coilarm=.01,coilwidth=.3} \nccoil{A}{B} \end{PSTInlineExample} \\ \begin{PSTInlineExample}(3,1) \rput(.5,.5){\rnode{A}{\psframebox{Cat}}} \rput(2.5,.5){\rnode{B}{\psframebox{Dog}}} \psset{coilarm=.01,coilwidth=.3} \nczigzag{A}{B} \end{PSTInlineExample} \\ \end{longtable} %\begin{multicols}{2} The effect of node connectors is demonstrated in the following, which uses the \Lcs{multido} macro (we will look at that in a future article) to place objects at regular intervals around a circle, and join them up %\end{multicols} \begin{example*} \newcount\CtA \newcount\CtB \newcommand{\Wheel}[3]{{% \pspicture(-1,-1)(1,1) \SpecialCoor \degrees[#1] \multido{\ia=1+1}{#1}{% \CtA=\ia \advance\CtA by 1 \CtB=#1 \advance\CtB by -\ia \multido{\ib=\CtA+1} {\CtB}{#3(1;\ia)(1;\ib)}} \multido{\i=1+1}{#1}{% \rput(1;\i){% \pscirclebox[fillstyle=solid, fillcolor=white]% {\footnotesize\i}}} \endpspicture}} \makebox[\columnwidth][s]{% \psset{unit=2cm} \Wheel{3}{1.8}{\psline} \Wheel{5}{1.8}{\psline} \psset{arcangle=10} \Wheel{12}{3}{\pcarc[linecolor=blue]}} \end{example*} %\begin{multicols}{2} It should be clear that we can draw arbitrary diagrams, trees etc simply by working out the coordinates of each node; however, in practice, there are two higher-level environments for easier creation of nodes --- matrices and trees. \subsection{Matrices --- grid-based nodes} The existing \LaTeX\ \Lenv{tabular} or AMS \LaTeX\ \Lenv{matrix} can be used to place nodes, but \PST\ provides its own environment, \Lenv{psmatrix}. This is like an easy form of table, since the number of columns does not have to be specified --- we simply separate column items by \verb|&| and rows by \verb|\\| as normal, and \PST\ makes each cell a node, named as \emph{rownumber},\emph{columnumber}. Thus the first node in the first row is named \texttt{1,1} and the third node in the fourth row is \texttt{4,3}, and these are used by the node connectors. \Lcs{psmatrix} has an optional parameter in which we can set \emph{rowsep} and \emph{colsep}, determining the gap between nodes. The parameter \emph{shortput} is set to \emph{tab} inside \Lcs{psmatrix} by default, so we can adopt a quite succinct notation: \begin{PSExample}(0,0)(2.5,5) \begin{psmatrix}[rowsep=1.5cm] &City&\\ {\tiny Shack} & House & {\Large Hotel} \psset{arrows=<<-} \ncline{1,2}{2,1}<{a} \ncline{1,2}{2,2}>{b} \ncline{1,2}{2,3}>{b} \psset{arrows=-,linestyle=dotted} \ncline{2,1}{2,2} \ncline{2,2}{2,3} \end{psmatrix} \end{PSExample} Notice in this example that the shorthand `>' stands for \Lcs{trput}, which places labels according to the distance between node centres, not the connection length, which allows for the difference in sizes of nodes in the second row. Nodes can span multiple columns by using the \Lcs{psspan} command at the end of the cell, with a parameter of the number of columns to span. A simple example of a square matrix can be created as: \begin{example*} \begin{psmatrix} A & B \\ $\sqrt{\frac{x + y}{z}}$ & D \ncline{->}{1,1}{1,2} \ncline{->}{1,2}{2,2} \ncline{->}{2,2}{2,1} \ncline{->}{2,1}{1,1} \end{psmatrix} \end{example*} \noindent but by changing a few initial parameter settings, we can present a `fancier' result, with nodes encircled, arrows on connectors, and a better spacing. The connector labels are added with the short-hand forms, which are those which are positioned in relation to node centres. In the second version, we redo the labels with the label types which relate to line length, which in this case gives a better result. The outer looping connector is an example of a construct whose extent \TeX\ will probably guess incorrectly. \begin{example*} \psset{arrows=->,labelsep=3pt, linecolor=gray,mnode=circle,shortput=nab} \begin{psmatrix}[rowsep=20pt,colsep=28pt] A & B \\ $\sqrt{\frac{x + y}{z}}$ & D \psset{linestyle=dotted} \ncline{1,1}{1,2}^{\emph{firstly}} \ncline{1,2}{2,2}>{\emph{next}} \ncline{2,2}{2,1}_{\emph{then}} \ncline{2,1}{1,1}<{\emph{lastly}} \end{psmatrix} \end{example*} \begin{example*} \psset{arrows=->,labelsep=3pt, linecolor=gray,mnode=circle} \begin{psmatrix}[rowsep=20pt,colsep=28pt] A & B \\ $\sqrt{\frac{x + y}{z}}$ & D \psset{linestyle=dotted} \ncline{1,1}{1,2}\naput{\emph{firstly}} \ncline{1,2}{2,2}\naput{\emph{next}} \ncline{2,2}{2,1}\naput{\emph{then}} \ncline{2,1}{1,1}\naput{\emph{lastly}} \nccurve[ncurv=2,linestyle=solid,angleA=90] {1,1}{2,2} \end{psmatrix} \end{example*} Matrices can be nested, and it is possible to link nodes from two different matrices, if the nodes are given explicit names. Each \Lcs{psmatrix} wipes out the current set of \emph{row,column} names. \begin{example*} \psset{linearc=.2} \begin{psmatrix}[rowsep=3pt,colsep=-10pt] [name=A]\psframebox{requirements}\\ &[name=B]\psframebox{design}\\ &&[name=C]\psframebox{coding}\\ &&&[name=D]\psframebox{testing}\\ &&&&[name=E]\psframebox{operations} \psset{linearc=0,arrows=->,armA=0pt,angleB=90} \ncangle{A}{B} \ncangle{B}{C} \ncangle{C}{D} \ncangle{D}{E} \psset{angleB=-90,angleA=180} \ncangle{B}{A} \ncangle{C}{B} \ncangle{D}{C} \ncangle{E}{D} \end{psmatrix} \end{example*} A normal low-level \PST\ command, like \Lcs{framebox}, can be applied to a whole matrix. We have to take some care in this example with alignment to make the connecting line horizontal, so we place the single node on the left in its own matrix. %\end{multicols} \begin{example*} \psset{fillcolor=white,fillstyle=solid} \def\Show#1{\psshadowbox{#1}} \psset{arrows=->} \begin{psmatrix} [mnode=r,ref=t] \psframebox[linestyle=none,framesep=.75]{% \psset{ref=c} \begin{psmatrix} [name=A]\Show{Stakeholder} \end{psmatrix} } & [mnode=r,ref=t] \psframebox[fillstyle=solid,framesep=.75,fillcolor=gray]{% \psset{ref=c} \rule{1cm}{0pt} \begin{psmatrix} [name=B]\Show{Goal} &\Show{Criteria}\\ \Show{Sub-goal} & \Show{Justification} \ncline{1,1}{1,2} \ncline{1,1}{2,2} \ncline{1,1}{2,1}\tlput{Strategy} \ncline{2,1}{2,2} \end{psmatrix} } \ncline[angleB=-180]{A}{B}\naput[npos=.7]{Model} \end{psmatrix} \end{example*} %\begin{multicols}{2} In addition, \PST\ has an extremely rich environment for drawing trees, permitting complex structures and presentation. This will form the subject of the next part of this series. \end{Article} \endinput %\begin{multicols}{2} \subsection{Tree diagrams} \PST\ has an extremely rich environment for drawing trees, which allow for very complex structures and presentation. The available commands are listed in Table~\ref{PSTtree} and the graphical parameters which apply especially to these are listed in Table~\ref{PSTtreeparms}. As one might expect, most other commands and parameters are also available, from both the generalized drawing, and the node connectors and labels. Each of the node types described earlier is turned into a `tree' node, and named by prefixing it with a `T' and removing the `node' suffix. %\end{multicols} \begin{small} \begin{longtable}{llH{10cm}} \caption{\protect\PST\ Graphical parameters for trees} \label{PSTtreeparms}\\[1mm] \emph{Parameter} & \emph{Default} & \emph{Explanation}\\ \hline \endfirsthead \protect\PST\ Graphical parameters for trees \emph{cont.}\\[1mm] \emph{Parameter} & \emph{Default} & \emph{Explanation}\\ \hline \endhead \mbox{}\\ \endfoot \Par{bbd=dim} () & set lower bounding box to \emph{dim}\\ \Par{bbh=dim} () & set upper bounding box to \emph{dim}\\ \Par{bbl=dim} () & set left bounding box to \emph{dim}\\ \Par{bbr=dim} () & set right bounding box to \emph{dim}\\ \Par{edge=command} (\ncline) & the node connector used to join tree nodes\\ \Par{fansize=dim} (1cm) &size of base for \Lcs{Tfan} tree node\\ \Par{levelsep=*dim} (2cm) & the distance between successive levels in a tree; the * makes the dimension be \emph{in addition} to the size of the nodes (levels are normally a fixed distance apart)\\ \Par{showbbox=true/false} (false) & draw a dotted frame showing the enclosing rectangle of trees\\ \Par{thislevelsep=*dim} () & like \emph{levelsep} but applies only to the current tree\\ \Par{thistreefit=tight/loose} () & like \emph{treefit} but applies only to the current tree\\ \Par{thistreenodesize=dim} () & like \emph{treenodesize} but applies only to the current tree\\ \Par{thistreesep=dim} () & like \emph{treesep} but applies only to the current tree\\ \Par{tndepth=dim} () & the minimum depth of tree node labels\\ \Par{tnheight=dim} () & the minimum height of tree node labels\\ \Par{tnpos=l/r/a/b} (b) & the position of tree node labels relative to the node (left, right, above, below) \\ \Par{tnsep=dim} () & the gap between tree node labels and the node (by default the same as \emph{labelsep} \\ \Par{treefit=tight/loose} (tight) & if tight, \emph{treesep} is the minimum distance between nodes on any level; if loose, \emph{treesep} is the distance between the enclosing bounding boxes of subtrees\\ \Par{treeflip=true/false} (false) & does a mirror image of the free, flipping the nodes\\ \Par{treemode=R/L/U/D} (D) & the direction of tree growth (right, left, up and down)\\ \Par{treenodes=dim} ($-$1pt) & if positive, this sets a fixed size for tree nodes, regardless of content\\ \Par{treesep=dim} (0.75cm) & the distance between successive nodes in a tree\\ \Par{xbbd=dim} () & increase lower bounding box by \emph{dim}\\ \Par{xbbh=dim} () & increase upper bounding box by \emph{dim}\\ \Par{xbbl=dim} () & increase left bounding box by \emph{dim}\\ \Par{xbbr=dim} () & increase right bounding box by \emph{dim}\\ \end{longtable} \end{small} \begin{small} \begin{longtable}{lH{.5\textwidth}} \caption{\protect\PST\ tree drawing commands\label{PSTtree}}\\ \hline \endfirsthead \multicolumn{2}{l}{\protect\PST\ tree drawing commands \emph{cont.}}\\ \hline \endhead \PSTCom \PStree{node}{subtrees} & draws a node and subtrees connected to it\\ \PSTCom \PSTree{rootnode} subtrees %\endpsTree & an `environment' form of \Lcs{psTree}\\ \PSTCom \Tn & null tree node \\ \PSTCom \tspace{dim} & leave gap of \emph{dim} before next level\\ \PSTComOpt \TC & tree node like \Lcs{Cnode} node\\ \PSTComOpt \TR{something} & tree node like \Lcs{Rnode} node\\ \PSTComOpt \Tcircle{something} & tree node like \Lcs{circlenode} node\\ \PSTComOpt \Tc{dim} & tree node like \Lcs{cnode} node\\ \PSTComOpt \Tdia{something} & tree node like \Lcs{dianode} node\\ \PSTComOpt \Tdot & tree node like \Lcs{dotnode} node\\ \PSTComOpt \Tf & tree node like \Lcs{fnode} node\\ \PSTComOpt \Tfan & draws a triangle with a top corner of the predecessor node\\ \PSTComOpt \Toval{something} & tree node like \Lcs{ovalnode} node\\ \PSTComOpt \Tp & tree node like \Lcs{pnode} node\\ \PSTComOpt \Tr{something} & tree node like \Lcs{rnode} node\\ \PSTComOpt \Ttri{something} & tree node like \Lcs{trinode} node\\ \PSTComOpt \skiplevel {nodes or subtrees} & miss out entire levels in a particular subtree\\ \PSTComOpt \skiplevels{n} {nodes or subtrees} & skip \emph{n} levels\\ \end{longtable} \end{small} %\begin{multicols}{2} The fundamental concept in \PST\ trees is the \emph{nesting} of trees; a simple tree consists of a root, and one or more nodes: \begin{example*} \pstree{\TC}{\TC\TC} \end{example*} \noindent but each node can itself be a tree: \begin{example*} \pstree{\TC}{\pstree{\TC}{\TC \TC} \pstree{\TC}{\TC \TC}} \end{example*} This simple constructs allows very complicated structures to be erected, as the examples below show. The following tree is a version of that shown in the \emph{\LaTeX\ Companion}, section 10.5.2, which was drawn using the \Lpack{ecltree} package; the ease of notation is roughly similar. As often in \LaTeX, the readability depends a great deal on how the code is laid out. The only change to the defaults is to lessen the vertical space between trees, and add some extra space around nodes. \begin{example*} \pstree[nodesep=2pt, levelsep=20pt]{\TR{grandfather}} { \pstree{\TR{uncle}}{\TR{cousin}} \pstree{\TR{father}} { \pstree{\TR{brother}}{\TR{nephew}} \pstree{\TR{Me}} { \pstree{\TR{son}}{\TR{grandson}} } } } \end{example*} If we now consider another tree drawing package described in the \emph{\LaTeX\ Companion}, Vanroose's \Lpack{trees}, the example in section 10.2.3 is a little harder to reproduce. The skeleton is trivial: \begin{example*} \pstree{\Tdot} { \Tdot \pstree{\Tdot} { \pstree{\Tdot} { \Tdot \Tdot \Tdot } \Tdot } } \end{example*} \noindent but when we come to add in all the node and connector labels, and change a few parameters to make the result nicer, the markup becomes a little complex, though the quantity is roughly similar to that of Vanroose: \begin{example*} \psset{labelsep=2pt,tnpos=a,radius=2pt} \pstree[treemode=R]{\TC*~{25}} { \TC*~{5}~[tnpos=r]{$L_a$} \taput{$a$} \pstree{\TC*~{20}\tbput{$b$}} { \pstree{\TC*~{15}\taput{$a$}} { \TC*~{7}~[tnpos=r]{$L_{baa}$}\taput{$a$} \TC*~{5}~[tnpos=r]{$L_{bab}$}\taput{$b$} \TC*~{3}~[tnpos=r]{$L_{bac}$}\tbput{$c$} } \TC*~{5}~[tnpos=r]{$L_{bb}$} \tbput{$b$} } } \end{example*} The node connectors in a tree are created by running the macro \Lcs{psedge} with the two nodes; the definition of \Lcs{psedge} can be overridden explicitly by a redefinition, or by using the \emph{edge} parameter. Here we redefine \Lcs{psedge} to be a curve, arrange the angles (bearing in mind that the tree is to grow upwards), and obtain a pleasing result. Note also the explicit links between named nodes, as well as the regular connections. %\end{multicols} \begin{example*} \footnotesize \def\psedge{\nccurve} \newcommand{\Female}[2][]{\TR[#1]{\emph{#2}}} \newcommand{\Male}[2][]{\TR[#1]{#2}} \psset{nodesep=2pt,angleA=90,angleB=-90,unit=.6cm} \pstree[treemode=U]{\Female{{\bfseries Matilde}}}{ \pstree{\Male{Sebastian}}{ \pstree{\Male[name=P]{Philip}}{\Male{Frederick}\Female{Ethel}} \pstree{\Female[name=W]{Mary}}{\Male{Lionel}\Female{Agnes}}} \pstree{\Female{Leonor}}{ \pstree{\Male[name=R]{Ra\'ul}}{\Male{Joaquim}\Female{J\'ulia}} \pstree{\Female[name=A]{Am\'elia}}{\Male{Melo}\Female{Augusta}}} } \psset{doubleline=true,linestyle=dotted} \ncline{P}{W}\nbput{1940} \ncline{R}{A}\nbput{1950} \end{example*} %\begin{multicols}{2} We said earlier that \PST\ does not always work out the extent of objects correctly, and this is illustrated by the connectors in the following example. Turning on \emph{showbbox}, we can see that without the use of \emph{xbbl} etc in the second incarnation, the bounding box is not correct: \begin{example*} \psset{angleB=-90,arrows=->,nrot=:U} \def\molesworth#1{% \pstree[#1]{\Tdia{ }} { \Tp[arrows=->,edge={\ncbar[angleA=180]}] \nbput{Gabbitas} {\psset{linestyle=dashed,arrows=-} \Tp } \Tp[arrows=->,edge={\ncbar}] \naput{Thring} } } \psset{showbbox=true} \begin{tabular}{l} \molesworth{}\\[10pt] \molesworth{xbbl=1cm,xbbr=1cm} \end{tabular} \end{example*} The technique of redefining edges is also necessary if we want right-angled joins, rather than straight lines. Again, we need to take care of the \emph{angleA} and \emph{angleB}, and ensure that in this left-right tree the nodes all line up on their left edges, using the \emph{ref} parameter. If this is not done, the \Lcs{ncangle} edges produce strange results. \begin{example*} \def\Item#1{\Tr[ref=l]{% \psframebox[linestyle=none]{#1}}} \def\psedge{\ncangle} \psset{xbbd=1.5cm,treemode=R, angleB=-180,angleA=0,levelsep=72pt} \pstree{\Item{langs}}{% \Item{german} \pstree{\Item{greek}}{% \Item{hamilton-kelly} \pstree{\Item{levy}}{% \Item{doc} \Item{src} } } \Item{italian} \pstree{\Item{portuguese}}{ \Item{hyphenation} } \pstree{\Item{turkish}}{% \Item{doc} \Item{hyphen} \Item{inputs} \Item{mf} \Item{misc} } \Item{xettex} } \end{example*} This allows us to remake the small family again, but this time with nicer connectors: \begin{example*} \def\XX#1{% \Tr{\psframebox{\rule{0pt}{9pt}#1}}% } \def\psedge{\ncangle} \psset{angleB=90,angleA=-90, levelsep=36pt,armB=14pt} \pstree{\XX{grandmother}} {% \pstree{\XX{aunt}}{\XX{cousin}} \pstree{\XX{mother}} { \pstree{\XX{sister}}{\XX{niece}} \pstree{\XX{Me}} { \pstree{\XX{daughter}} {\XX{granddaughter}} } } } \end{example*} The node connectors are, of course, standard \PST\ objects, so they obey all the normal parameters; here we draw the lower part of the tree with dashed lines, and each node content is set in math mode. \begin{example*} \footnotesize \psset{nodesep=2pt} \def\XX#1#2{% \TR{\ensuremath{#1_{\mbox{#2}}}}% } \pstree[xbbr=1.5cm]{\XX{R}{AMSU}} { \XX{S}{RawData} \pstree{\XX{S}{combine} \trput{\ensuremath{\oplus}} \tlput{\ensuremath{\oplus}}} { \psset{linestyle=dashed} \XX{R}{Modes} \XX{R}{Normal} \XX{R}{Vertical} \XX{R}{Latched} \XX{R}{Tripped} } \XX{S}{GenerateData} } \end{example*} If we want to hang distinct-looking trees off one node, the \emph{ncangle} connector, with some offsets, produces the right result. \begin{example*} \psset{framearc=.2,levelsep=4cm, armB=1cm,angleB=-180} \def\psedge{\ncangle} \def\TreeBox#1{\Tr{\psframebox{#1}}} \pstree[treemode=R]{\TreeBox{Monitor}} { \psset{offsetA=4pt} \TreeBox{Attitude Generator} \naput[npos=2.5]{{\small init}} \nbput[npos=2.5]{{\small stop}} \psset{offsetA=-4pt} \TreeBox{Normal Generator} } \end{example*} With simple connectors, we do not need to worry about the offsets or angles; what this example shows is how nested trees can change direction: \begin{example*} \psset{arrows=->,framearc=.2} \def\Treebox#1{% \Tr{\psframebox{#1}} } \pstree[treemode=R] {\Treebox{A$\rightarrow$B}}{ \pstree{ \Treebox{B$\rightarrow$C} }{ \Treebox{A$\rightarrow$D} \pstree[treemode=L] {\Treebox{B$\rightarrow$E}} {\Tn\TC[arrows=<-]} } } \end{example*} Finally, let us not forget the simple empty node: \begin{example*} \pstree{\Tp}{ \Tcircle{A} \Tcircle{B} } \end{example*} \catcode`\<=12 \end{Article} %\end{document}