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avgEst Weighted Average of Model Estimates

Description

Calculate a weighted average of model estimates (e.g. effects, fitted values, residuals) for a set of
models.

Usage

avgEst(est, weights = "equal", est.names = NULL)
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Arguments

est A list or nested list of numeric vectors, comprising the model estimates. In the
latter case, these should correspond to estimates for candidate models for each
of a set of different response variables.

weights An optional numeric vector of weights to use for model averaging, or a named
list of such vectors. The former should be supplied when est is a list, and the
latter when it is a nested list (with matching list names). If weights = "equal"
(default), a simple average is calculated instead.

est.names An optional vector of names used to extract and/or sort estimates from the out-
put.

Details

This function can be used to calculate a weighted average of model estimates such as effects, fitted
values, or residuals, where models are typically competing candidate models fit to the same response
variable. Weights are typically a ’weight of evidence’ type metric such as Akaike model weights
(Burnham & Anderson, 2002; Burnham et al., 2011), which can be conveniently calculated in R
using packages such as MuMIn or AICcmodavg. However, numeric weights of any sort can be
used. If none are supplied, a simple average is calculated instead.

Averaging is performed via the ’full’/’zero’ rather than ’subset’/’conditional’/’natural’ method,
meaning that zero is substituted for estimates for any ’missing’ parameters (e.g. effects) prior
to calculations. This provides a form of shrinkage and thus reduces estimate bias (Burnham &
Anderson, 2002; Grueber et al., 2011).

Value

A numeric vector of the model-averaged estimates, or a list of such vectors.

References

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Prac-
tical Information-Theoretic Approach (2nd ed.). Springer-Verlag. https://link.springer.com/
book/10.1007/b97636

Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel
inference in behavioral ecology: some background, observations, and comparisons. Behavioral
Ecology and Sociobiology, 65(1), 23-35. doi:10/c4mrns

Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Bartoń, K., Beale,
C. M., Ciuti, S., Elith, J., Gerstner, K., Guelat, J., Keil, P., Lahoz-Monfort, J. J., Pollock, L. J.,
Reineking, B., Roberts, D. R., Schröder, B., Thuiller, W., Warton, D. I., . . . Hartig, F. (2018).
Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches
for predictive inference. Ecological Monographs, 88(4), 485–504. doi:10/gfgwrv

Grueber, C. E., Nakagawa, S., Laws, R. J., & Jamieson, I. G. (2011). Multimodel inference in
ecology and evolution: challenges and solutions. Journal of Evolutionary Biology, 24(4), 699-711.
doi:10/b7b5d4

Walker, J. A. (2019). Model-averaged regression coefficients have a straightforward interpretation
using causal conditioning. BioRxiv, 133785. doi:10/c8zt

https://cran.r-project.org/package=MuMIn
https://cran.r-project.org/package=AICcmodavg
https://stackoverflow.com/questions/53055050/predicted-values-with-mumin-throwing-error-when-full-false
https://link.springer.com/book/10.1007/b97636
https://link.springer.com/book/10.1007/b97636
https://doi.org/10/c4mrns
https://doi.org/10/gfgwrv
https://doi.org/10/b7b5d4
https://doi.org/10/c8zt
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Examples

# Model-averaged effects (coefficients)
m <- shipley.growth # candidate models
e <- lapply(m, function(i) coef(summary(i))[, 1])
avgEst(e)

# Using weights
w <- runif(length(e), 0, 1)
avgEst(e, w)

# Model-averaged predictions
f <- lapply(m, predict)
head(avgEst(f, w))

bootCI Bootstrap Confidence Intervals

Description

Calculate confidence intervals from bootstrapped model effects.

Usage

bootCI(mod, conf = 0.95, type = "bca", digits = 3, bci.arg = NULL, ...)

Arguments

mod A fitted model object. Alternatively, a boot object (class "boot"), containing
bootstrapped model effects. Can also be a list or nested list of such objects.

conf A numeric value specifying the confidence level for the intervals.

type The type of confidence interval to return (defaults to "bca" – see Details). See
boot::boot.ci() for further options.

digits The number of decimal places to return for numeric values.

bci.arg A named list of any additional arguments to boot::boot.ci(), excepting argu-
ment index.

... Arguments to bootEff().

Details

bootCI() uses boot::boot.ci() to calculate confidence intervals of the specified type and level
calculated from bootstrapped model effects. If a model or models is supplied, bootstrapping will
first be performed via bootEff().

Nonparametric bias-corrected and accelerated confidence intervals (BCa; Efron, 1987) are calcu-
lated by default, which should provide the most accurate coverage across a range of bootstrap
sampling distributions (Puth et al., 2015). They will, however, be inappropriate for parametric re-
sampling – in which case the default will be set to the bootstrap percentile method instead ("perc").

https://stackoverflow.com/questions/7588388/adjusted-bootstrap-confidence-intervals-bca-with-parametric-bootstrap-in-boot
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Effects and confidence intervals are returned in a summary table, along with the bootstrap standard
errors (standard deviations of the samples) and the bootstrap biases (sample means minus original
estimates). Effects for which the confidence intervals do not contain zero are highlighted with a star
(i.e. ’significant’ at the conf level).

Value

A summary table of the effects and bootstrapped confidence intervals (data frame), or a list or nested
list of same.

Note

All bootstrapped confidence intervals will tend to underestimate the true nominal coverage to some
extent when sample size is small (Chernick & Labudde, 2009), so the appropriate caution should be
exercised in interpretation in such cases. Comparison of different interval types may be informative.
For example, normal-theory based intervals may outperform bootstrap percentile methods when n
< 34 (Hesterberg, 2015). Ultimately however, the bootstrap is not a solution to small sample size.

References

Chernick, M. R., & Labudde, R. A. (2009). Revisiting Qualms about Bootstrap Confidence Inter-
vals. American Journal of Mathematical and Management Sciences, 29(3–4), 437–456. doi:10/
c8zv

Efron, B. (1987). Better Bootstrap Confidence Intervals. Journal of the American Statistical Asso-
ciation, 82(397), 171–185. doi:10/gfww2z

Hesterberg, T. C. (2015). What Teachers Should Know About the Bootstrap: Resampling in the
Undergraduate Statistics Curriculum. The American Statistician, 69(4), 371–386. doi:10/gd85v5

Puth, M.-T., Neuhäuser, M., & Ruxton, G. D. (2015). On the variety of methods for calculating
confidence intervals by bootstrapping. Journal of Animal Ecology, 84(4), 892–897. doi:10/f8n9rq

Examples

# CIs calculated from bootstrapped SEM
(shipley.sem.ci <- bootCI(shipley.sem.boot))

# From original SEM (models)
# (not typically recommended – better to use saved boot objects)
# system.time(
# shipley.sem.ci <- bootCI(shipley.sem, R = 1000, seed = 13,
# ran.eff = "site")
# )

https://stats.stackexchange.com/questions/112147/can-bootstrap-be-seen-as-a-cure-for-the-small-sample-size
https://doi.org/10/c8zv
https://doi.org/10/c8zv
https://doi.org/10/gfww2z
https://doi.org/10/gd85v5
https://doi.org/10/f8n9rq
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bootEff Bootstrap Effects

Description

Bootstrap model effects (standardised coefficients) and optional SEM correlated errors.

Usage

bootEff(
mod,
R,
seed = NULL,
type = c("nonparametric", "parametric", "semiparametric"),
ran.eff = NULL,
cor.err = NULL,
catch.err = TRUE,
parallel = c("snow", "multicore", "no"),
ncpus = NULL,
cl = NULL,
bM.arg = NULL,
...

)

Arguments

mod A fitted model object, or a list or nested list of such objects. Alternatively,
a "psem" object from piecewiseSEM::psem(). If model lists are unnamed,
response variable names will be used.

R Number of bootstrap resamples to generate.

seed Seed for the random number generator. If not provided, a random five-digit
integer is used (see Details).

type The type of bootstrapping to perform. Can be "nonparametric" (default),
"parametric", or "semiparametric" (the last two currently only for mixed
models, via lme4::bootMer()).

ran.eff For nonparametric bootstrapping of mixed models, the name of the (highest-
level) random effect to resample (see Details).

cor.err Optional, names of SEM correlated errors to be bootstrapped (ignored if mod is
a "psem" object). Should be of the form: c("var1 ~~ var2", "var3 ~~ var4",
...) (spaces optional), using model/response variable names.

catch.err Logical, should errors generated during model fitting or estimation be caught
and NA returned for estimates? If FALSE, any such errors will cause the function
to exit.

parallel The type of parallel processing to use. Can be one of "snow", "multicore", or
"no" (for none).

https://rdrr.io/cran/piecewiseSEM/man/psem.html
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ncpus Number of system cores to use for parallel processing. If NULL (default), all
available cores are used.

cl Optional cluster to use if parallel = "snow". If NULL (default), a local cluster
is created using the specified number of cores.

bM.arg A named list of any additional arguments to lme4::bootMer().

... Arguments to stdEff().

Details

bootEff() uses boot::boot() (primarily) to bootstrap standardised effects from a fitted model or
list of models (calculated using stdEff()). Bootstrapping is typically nonparametric, i.e. model
effects are calculated from data where the rows have been randomly sampled with replacement.
10,000 such resamples should provide accurate coverage for confidence intervals in most situa-
tions, with fewer sufficing in some cases. To ensure that data is resampled in the same way across
individual bootstrap operations within the same run (e.g. models in a list), the same seed is set per
operation, with the value saved as an attribute to the matrix of bootstrapped values (for reproducibil-
ity). The seed can either be user-supplied or a randomly-generated five-digit number (default), and
is always re-initialised on exit (i.e. set.seed(NULL)).

Where weights are specified, bootstrapped effects will be a weighted average across the set of can-
didate models for each response variable, calculated after each model is first refit to the resampled
dataset (specifying weights = "equal" will use a simple average instead – see avgEst()). If no
weights are specified and mod is a nested list of models, the function will throw an error, as it will be
expecting weights for a presumed model averaging scenario. If instead the user wishes to bootstrap
each individual model, they should recursively apply the function using rMapply() (remember to
set a seed).

Where names of response variables with correlated errors are specified to cor.err, the function
will also return bootstrapped Pearson correlated errors (weighted residuals) for those models. If
weights are supplied and mod is a nested list, residuals will first be averaged across candidate
models. If any two models (or candidate sets) with correlated errors were fit to different subsets
of data observations, both models/sets are first refit to data containing only the observations in
common.

For nonparametric bootstrapping of mixed models, resampling should occur at the group-level, as
individual observations are not independent. The name of the random effect to resample must be
supplied to ran.eff. For nested random effects, this should be the highest-level group (Davison &
Hinkley, 1997; Ren et al., 2010). This form of resampling will result in datasets of different sizes
if observations are unbalanced across groups; however this should not generally be an issue, as the
number of independent units (groups), and hence the ’degrees of freedom’, remains unchanged.

For mixed models with non-nested random effects, nonparametric resampling will not be appro-
priate. In these cases, parametric or semiparametric bootstrapping can be performed instead via
lme4::bootMer() (with additional arguments passed to that function as necessary). NOTE: As
lme4::bootMer() takes only a fitted model as its first argument (i.e. no lists), any model averaging
is calculated ’post-hoc’ using the estimates in boot objects for each candidate model, rather than
during the bootstrapping process itself (i.e. the default procedure via boot::boot()). Results are
then returned in a new boot object for each response variable or correlated error estimate.

If supplied a list containing both mixed and non-mixed models, bootEff() with nonparametric
bootstrapping will still work and will treat all models as mixed models for resampling (with a

https://stats.stackexchange.com/questions/46965/bootstrapping-unbalanced-clustered-data-non-parametric-bootstrap
https://stats.stackexchange.com/questions/228800/crossed-vs-nested-random-effects-how-do-they-differ-and-how-are-they-specified
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warning). This is likely a relatively rare scenario, but may occur where the user decides that non-
mixed models perform similarly and/or cause less fitting issues than their mixed counterparts for at
least some response variables (e.g. where random effect variance estimates are at or near zero). The
data will be resampled on the supplied random effect for all models. If nonparametric bootstrapping
is not used in this scenario however, an error will occur, as lme4::bootMer() will only accept
mixed models.

Parallel processing is used by default via the parallel package and option parallel = "snow" (and
is generally recommended), but users can specify the type of parallel processing to use, or none. If
"snow", a cluster of workers is created using makeCluster(), and the user can specify the number
of system cores to incorporate in the cluster (defaults to all available). bootEff() then exports all
required objects and functions to this cluster using clusterExport(), after performing a (rough)
match of all objects and functions in the current global environment to those referenced in the model
call(s). Users should load any required external packages prior to calling the function.

Value

An object of class "boot" containing the bootstrapped effects, or a (named) list/nested list of such
objects.

Note

Bootstrapping mixed (or indeed any other) models may take a very long time when the number of
replicates, observations, parameters, and/or models is high. To decrease processing time, it may
be worth trying different optimisers and/or other options to generate faster estimates (always check
results).

References

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Prac-
tical Information-Theoretic Approach (2nd ed.). Springer-Verlag. https://link.springer.com/
book/10.1007/b97636

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application. Cambridge
University Press.

Ren, S., Lai, H., Tong, W., Aminzadeh, M., Hou, X., & Lai, S. (2010). Nonparametric bootstrapping
for hierarchical data. Journal of Applied Statistics, 37(9), 1487–1498. doi:10/dvfzcn

Examples

# Bootstrap Shipley SEM (test – 1 rep)
# (set 'site' as group for resampling – highest-level random effect)
bootEff(shipley.sem, R = 1, ran.eff = "site", parallel = "no")

# Check estimates (use saved boot object – 1000 reps)
lapply(shipley.sem.boot, "[[", 1) # original
lapply(shipley.sem.boot, function(i) head(i$t)) # bootstrapped

https://link.springer.com/book/10.1007/b97636
https://link.springer.com/book/10.1007/b97636
https://doi.org/10/dvfzcn
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getData Get Model Data

Description

Extract the data used to fit a model.

Usage

getData(mod, subset = FALSE, merge = FALSE, env = NULL)

Arguments

mod A fitted model object, or a list or nested list of such objects.

subset Logical. If TRUE, only observations used to fit the model(s) are returned (i.e.
missing observations (NA) or those with zero weight are removed).

merge Logical. If TRUE, and mod is a list or nested list, a single dataset containing all
variables used to fit models is returned (variables must be the same length).

env Environment in which to look for data (passed to eval()). Defaults to the
formula() environment.

Details

This is a simple convenience function to return the data used to fit a model, by evaluating the ’data’
slot of the model call object. If the ’data’ argument of the model call was not specified, or is not
a data frame (or coercible to such) containing all variables referenced in the model formula, an
error will be thrown – this restriction is largely to ensure that a single coherent dataset of all model
variables can be made available for resampling purposes.

If mod is a list of models and merge = TRUE, all (unique) variables used to fit models are merged
into a single data frame. This will return an error if subset = TRUE results in datasets with different
numbers of observations (rows).

Value

A data frame of the variables used to fit the model(s), or a list or nested list of same.

See Also

getCall()

Examples

# Get data used to fit SEM from Shipley (2009)
head(getData(shipley.sem[[1]])) # from single model
lapply(getData(shipley.sem), head) # from SEM (list)
head(getData(shipley.sem, merge = TRUE)) # from SEM (single dataset)
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getEff Get SEM Effects

Description

Extract SEM effects from an object of class "semEff".

Usage

getEff(eff, responses = NULL, type = c("orig", "boot"))

getDirEff(...)

getIndEff(...)

getTotEff(...)

getMedEff(...)

getAllInd(eff, ...)

getEffTable(eff, ...)

getDirEffTable(...)

getIndEffTable(...)

getTotEffTable(...)

getMedEffTable(...)

Arguments

eff An object of class "semEff".

responses An optional character vector, the names of one or more SEM response variables
for which to return effects. Can also be a numeric vector of indices of eff. If
NULL (default), all effects are returned.

type The type of effects to return. Can be "orig" (original estimates - default) or
"boot" (for bootstrapped).

... Arguments (above) to be passed to getEff() from the other extractor func-
tions. type = "boot" is not available for getAllInd() or getEffTable() (and
derivatives).

Details

These are simple extractor functions for effects calculated using semEff(), intended for conve-
nience (e.g. for use with predEff()).
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Value

A list containing the original or bootstrapped effects for each response variable as numeric vec-
tors or matrices (respectively), or a table of (unformatted) effects and confidence intervals (for
getEffTable()).

Functions

• getEff(): Get effects.

• getDirEff(): Get direct effects.

• getIndEff(): Get indirect effects.

• getTotEff(): Get total effects.

• getMedEff(): Get mediator effects.

• getAllInd(): Get all indirect effects.

• getEffTable(): Get effects table.

• getDirEffTable(): Get direct effects table.

• getIndEffTable(): Get indirect effects table.

• getTotEffTable(): Get total effects table.

• getMedEffTable(): Get mediator effects table.

getFamily Get Model Error Distribution Family

Description

Extract the error distribution family (and link function) from a fitted model.

Usage

getFamily(mod)

Arguments

mod A fitted model object, or a list or nested list of such objects.

Details

getFamily() returns an appropriate family object for a range of different model classes, similarly
to family(). However, it can be also be used for some classes without an existing family method.
Mostly for internal use.

Value

A model "family" object, or a list or nested list of such objects.
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See Also

family()

Examples

# SEM model error distributions
getFamily(shipley.sem)

getX Get Model Design Matrix

Description

Return the design matrix for a fitted model, with some additional options.

Usage

getX(
mod,
data = NULL,
contrasts = NULL,
add.data = FALSE,
centre = FALSE,
scale = FALSE,
as.df = FALSE,
merge = FALSE,
env = NULL

)

Arguments

mod A fitted model object, or a list or nested list of such objects. Can also be a model
formula(s) or character vector(s) of term names (in which case data must be
supplied).

data An optional dataset, used to refit the model(s) and/or construct the design matrix.

contrasts Optional, a named list of contrasts to apply to factors (see the contrasts.arg
argument of model.matrix() for specification). These will override any exist-
ing contrasts in the data or model call.

add.data Logical, whether to append data not specified in the model formula (with factors
converted to dummy variables).

centre, scale Logical, whether to mean-centre and/or scale terms by standard deviations (for
interactions, this is carried out prior to construction of product terms). Alterna-
tively, a numeric vector of means/standard deviations (or other statistics) can be
supplied, whose names must match term names.

as.df Logical, whether to return the matrix as a data frame (without modifying names).
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merge Logical. If TRUE, and mod is a list or nested list, a single matrix containing all
terms is returned (variables must be the same length).

env Environment in which to look for model data (if none supplied). Defaults to the
formula() environment.

Details

This is primarily a convenience function to enable more flexible construction of design matrices,
usually for internal use and for further processing. Use cases include processing and/or return of
terms which may not be present in a typical design matrix (e.g. constituents of product terms,
dummy variables).

Value

A matrix or data frame of model(s) terms, or a list or nested list of same.

See Also

model.matrix()

Examples

# Model design matrix (original)
m <- shipley.growth[[3]]
x1 <- model.matrix(m)
x2 <- getX(m)
stopifnot(all.equal(x1, x2, check.attributes = FALSE))

# Using formula or term names (supply data)
d <- shipley
x1 <- getX(formula(m), data = d)
x2 <- getX(names(lme4::fixef(m)), data = d)
stopifnot(all.equal(x1, x2))

# Scaled terms
head(getX(m, centre = TRUE, scale = TRUE))

# Combined matrix for SEM
head(getX(shipley.sem, merge = TRUE))
head(getX(shipley.sem, merge = TRUE, add.data = TRUE)) # add other variables

getY Get Model Response Variable

Description

Extract the response variable from a fitted model on the original or link scale.
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Usage

getY(mod, data = NULL, link = FALSE, offset = FALSE, env = NULL)

Arguments

mod A fitted model object, or a list or nested list of such objects.

data An optional dataset, used to first refit the model(s).

link Logical. If TRUE, return the GLM response variable on the link scale (see De-
tails).

offset Logical. If TRUE, include model offset(s) in the response.

env Environment in which to look for model data (if none supplied). Defaults to the
formula() environment.

Details

getY() will return the response variable from a model by summing the fitted values and the response
residuals. If link = TRUE and the model is a GLM, the response is transformed to the link scale. If
this results in undefined values, an estimate based on the ’working’ response variable of the GLM
is returned instead (see glt()).

Any offset variables are subtracted from the response by default. This means that, for example,
rates rather than raw counts will be returned for poisson GLMs (where applicable).

Value

A numeric vector comprising the response variable on the original or link scale, or an array, list of
vectors/arrays, or nested list.

Examples

# All SEM responses (original scale)
head(getY(shipley.sem))

# Estimated response in link scale from binomial model
head(getY(shipley.sem$Live, link = TRUE))

glt Generalised Link Transformation

Description

Transform a numeric variable using a GLM link function, or return an estimate of same.

Usage

glt(x, family = NULL, force.est = FALSE)



glt 15

Arguments

x a positive numeric vector, corresponding to a variable to be transformed. Can
also be a list or nested list of such vectors.

family Optional, the error distribution family containing the link function which will be
used to transform x (see family() for specification details). If not supplied, it
is determined from x (see Details).

force.est Logical, whether to force the return of the estimated rather than direct transfor-
mation, where the latter is available (i.e. does not contain undefined values).

Details

glt() can be used to provide a ’generalised’ transformation of a numeric variable, using the link
function from a generalised linear model (GLM) fit to the variable. The transformation is gen-
eralised in the sense that it can extend even to cases where a standard link transformation would
produce undefined values. It achieves this by using an estimate based on the ’working’ response
variable of the GLM (see below). If the error distribution family is not specified (default), then
it is determined (roughly) from x, with binomial(link = "logit") used when all x <= 1 and
poisson(link = "log") otherwise. Although the function is generally intended for variables with
a binomial or Poisson distribution, any variable which can be fit using glm() can be supplied. One
of the key purposes of glt() is to allow the calculation of fully standardised effects (coefficients)
for GLMs (in which case x = the response variable), while it can also facilitate the proper calculation
of SEM indirect effects (see below).

Estimating the direct link transformation
A key challenge in generating fully standardised effects for a GLM with a non-gaussian link func-
tion is the difficulty in calculating appropriate standardised ranges (typically the standard devia-
tion) for the response variable in the link scale. This is because a direct transformation of the
response will often produce undefined values. Although methods for circumventing this issue by
indirectly estimating the variance of the response on the link scale have been proposed – including
a latent-theoretic approach for binomial models (McKelvey & Zavoina, 1975) and a more general
variance-based method using pseudo R-squared (Menard, 2011) – here an alternative approach is
used. Where transformed values are undefined, the function will instead return the synthetic ’work-
ing’ response from the iteratively reweighted least squares (IRLS) algorithm of the GLM (McCul-
lagh & Nelder, 1989). This is reconstructed as the sum of the linear predictor and the working
residuals – with the latter comprising the error of the model on the link scale. The advantage of this
approach is that a relatively straightforward ’transformation’ of any non-gaussian response is read-
ily attainable in all cases. The standard deviation (or other relevant range) can then be calculated
using values of the transformed response and used to scale the effects. An additional benefit for
piecewise SEMs is that the transformed rather than original response can be specified as a predictor
in other models, ensuring that standardised indirect and total effects are calculated correctly (i.e.
using the same units).

To ensure a high level of ’accuracy’ in the working response – in the sense that the inverse-
transformation is practically indistinguishable from the original response variable – the function
uses the following iterative fitting procedure to calculate a ’final’ working response:

1. A new GLM of the same error family is fit with the original response variable as both predictor
and response, and using a single IRLS iteration.

2. The working response is reconstructed from this model.
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3. The inverse transformation of the working response is calculated.

4. If the inverse transformation is ’effectively equal’ to the original response (tested using all.equal()
with the default tolerance of 1.5e-8), the working response is returned; otherwise, the GLM
is refit with the working response now as the predictor, and steps 2-4 are repeated – each time
with an additional IRLS iteration.

This approach will generate a very reasonable transformation of the response variable, which will
also be practically indistinguishable from the direct transformation, where this can be compared (see
Examples). It also ensures that the transformed values, and hence the standard deviation, are the
same for any GLM fitting the same response (provided it uses the same link function) – facilitating
model comparisons, selection, and averaging.

Value

A numeric vector of the transformed values, or an array, list of vectors/arrays, or nested list.

Note

As we often cannot directly observe the GLM response variable on the link scale, any method
estimating its values or statistics will be wrong to some degree. The heuristic approach described
here aims to reduce this error as far as (reasonably) possible, while also generating standardised
effects whose interpretation most closely resembles those of the ordinary linear model. The solution
of using the working response from the GLM to scale effects is a practical, but reasonable one, and
one that takes advantage of modern computing power to minimise error through iterative model
fitting. An added bonus is that the estimated variance is constant across models fit to the same
response variable, which cannot be said of previous methods (Menard, 2011). The overall approach
would be classed as ’observed-empirical’ by Grace et al. (2018), as it utilises model error variance
(the estimated working residuals) rather than theoretical distribution-specific variance.

References

Grace, J. B., Johnson, D. J., Lefcheck, J. S., & Byrnes, J. E. K. (2018). Quantifying relative
importance: computing standardized effects in models with binary outcomes. Ecosphere, 9, e02283.
doi:10/gdm5bj

McCullagh P., & Nelder, J. A. (1989). Generalized Linear Models (2nd Edition). Chapman and
Hall.

McKelvey, R. D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level depen-
dent variables. The Journal of Mathematical Sociology, 4(1), 103-120. doi:10/dqfhpp

Menard, S. (2011). Standards for Standardized Logistic Regression Coefficients. Social Forces, 89,
1409-1428. doi:10/bvxb6s

Examples

# Compare estimate with a direct link transformation
# (test with a poisson variable, log link)
set.seed(13)
y <- rpois(30, lambda = 10)
yl <- unname(glt(y, force.est = TRUE))

https://doi.org/10/gdm5bj
https://doi.org/10/dqfhpp
https://doi.org/10/bvxb6s
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# Effectively equal?
all.equal(log(y), yl)
# TRUE

# Actual difference...
all.equal(log(y), yl, tolerance = .Machine$double.eps)
# "Mean relative difference: 2.489317e-10"

predEff Predict Effects

Description

Generate predicted values for SEM direct, indirect, or total effects.

Usage

predEff(
mod,
newdata = NULL,
effects = NULL,
eff.boot = NULL,
re.form = NA,
type = c("link", "response"),
interaction = NULL,
use.raw = FALSE,
ci.conf = 0.95,
ci.type = "bca",
digits = 3,
bci.arg = NULL,
parallel = "no",
ncpus = NULL,
cl = NULL,
...

)

Arguments

mod A fitted model object, or a list or nested list of such objects.

newdata An optional data frame of new values to predict, which should contain all the
variables named in effects or all those used to fit mod.

effects A numeric vector of effects to predict, or a list or nested list of such vec-
tors. These will typically have been calculated using semEff(), bootEff(), or
stdEff(). Alternatively, a boot object produced by bootEff() can be supplied.

eff.boot A matrix of bootstrapped effects used to calculate confidence intervals for pre-
dictions, or a list or nested list of such matrices. These will have been calculated
using semEff() or bootEff().
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re.form For mixed models of class "merMod", the formula for random effects to con-
dition on when predicting effects. Defaults to NA, meaning random effects are
averaged over. See lme4:::predict.merMod() for further specification details.

type The type of prediction to return (for GLMs). Can be either "link" (default) or
"response".

interaction An optional name of an interactive effect, for which to return standardised ef-
fects for a ’main’ continuous variable across different values or levels of inter-
acting variables (see Details).

use.raw Logical, whether to use raw (unstandardised) effects for all calculations (if present).

ci.conf A numeric value specifying the confidence level for confidence intervals on pre-
dictions (and any interactive effects).

ci.type The type of confidence interval to return (defaults to "bca" – see Details). See
boot::boot.ci() for further specification details.

digits The number of significant digits to return for interactive effects.

bci.arg A named list of any additional arguments to boot::boot.ci(), excepting argu-
ment index.

parallel The type of parallel processing to use for calculating confidence intervals on
predictions. Can be one of "snow", "multicore", or "no" (for none – the de-
fault).

ncpus Number of system cores to use for parallel processing. If NULL (default), all
available cores are used.

cl Optional cluster to use if parallel = "snow". If NULL (default), a local cluster
is created using the specified number of cores.

... Arguments to stdEff().

Details

Generate predicted values for SEM direct, indirect, or total effects on a response variable, which
should be supplied to effects. These are used in place of model coefficients in the standard
prediction formula, with values for predictors drawn either from the data used to fit the original
model(s) (mod) or from newdata. It is assumed that effects are fully standardised; however, if
this is not the case, then the same centring and scaling options originally specified to stdEff()
should be re-specified – which will then be used to standardise the data. If no effects are supplied,
standardised (direct) effects will be calculated from the model and used to generate predictions.
These predictions will equal the model(s) fitted values if newdata = NULL, unique.eff = FALSE,
and re.form = NULL (where applicable).

Model-averaged predictions can be generated if averaged effects are supplied to the model in
mod, or, alternatively, if weights are specified (passed to stdEff()) and mod is a list of candidate
models (effects can also be passed using this latter method). For mixed model predictions where
random effects are included (e.g. re.form = NULL), the latter approach should be used, otherwise
the contribution of random effects will be taken from the single model instead of (correctly) being
averaged over a candidate set.

If bootstrapped effects are supplied to eff.boot (or to effects, as part of a boot object), boot-
strapped predictions are calculated by predicting from each effect. Confidence intervals can then

https://rdrr.io/cran/lme4/man/predict.merMod.html
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be returned via bootCI(), for which the type should be appropriate for the original form of boot-
strap sampling (defaults to "bca"). If the number of observations to predict is very large, parallel
processing (via pSapply()) may speed up the calculation of intervals.

Predictions are always returned in the original (typically unstandardised) units of the (link-transformed)
response variable. For GLMs, they can be returned in the response scale if type = "response".

Additionally, if the name of an interactive effect is supplied to interaction, standardised effects
(and confidence intervals) can be returned for effects of a continuous ’main’ variable across different
values or levels of interacting variable(s). The name should be of the form "x1:x2...", containing
all the variables involved and matching the name of an interactive effect in the model(s) terms or
in effects. The values for all variables should be supplied in newdata, with the main continuous
variable being automatically identified as that having the most unique values.

Value

A numeric vector of the predictions, or, if bootstrapped effects are supplied, a list containing the
predictions and the upper and lower confidence intervals. Optional interactive effects may also be
appended. Predictions may also be returned in a list or nested list, depending on the structure of
mod (and other arguments).

See Also

predict()

Examples

# Predict effects (direct, total)
m <- shipley.sem
e <- shipley.sem.eff
dir <- getDirEff(e)
tot <- getTotEff(e)
f.dir <- predEff(m, effects = dir, type = "response")
f.tot <- predEff(m, effects = tot, type = "response")
f.dir$Live[1:10]
f.tot$Live[1:10]

# Using new data for predictors
d <- na.omit(shipley)
xn <- c("lat", "DD", "Date", "Growth")
seq100 <- function(x) seq(min(x), max(x), length = 100)
nd <- data.frame(sapply(d[xn], seq100))
f.dir <- predEff(m, nd, dir, type = "response")
f.tot <- predEff(m, nd, tot, type = "response")
f.dir$Live[1:10]
f.tot$Live[1:10]
# Add CIs
# dir.b <- getDirEff(e, "boot")
# tot.b <- getTotEff(e, "boot")
# f.dir <- predEff(m, nd, dir, dir.b, type = "response")
# f.tot <- predEff(m, nd, tot, tot.b, type = "response")

# Predict an interactive effect (e.g. Live ~ Growth * DD)
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xn <- c("Growth", "DD")
d[xn] <- scale(d[xn]) # scale predictors (improves fit)
m <- lme4::glmer(Live ~ Growth * DD + (1 | site) + (1 | tree),

family = binomial, data = d)
nd <- with(d, expand.grid(

Growth = seq100(Growth),
DD = mean(DD) + c(-sd(DD), sd(DD)) # two levels for DD

))
f <- predEff(m, nd, type = "response", interaction = "Growth:DD")
f$fit[1:10]
f$interaction
# Add CIs (need to bootstrap model...)
# system.time(B <- bootEff(m, R = 1000, ran.eff = "site"))
# f <- predEff(m, nd, B, type = "response", interaction = "Growth:DD")

# Model-averaged predictions (several approaches)
m <- shipley.growth # candidate models (list)
w <- runif(length(m), 0, 1) # weights
e <- stdEff(m, w) # averaged effects
f1 <- predEff(m[[1]], effects = e) # pass avg. effects
f2 <- predEff(m, weights = w) # pass weights argument
f3 <- avgEst(predEff(m), w) # use avgEst function
stopifnot(all.equal(f1, f2))
stopifnot(all.equal(f2, f3))

# Compare model fitted values: predEff() vs. fitted()
m <- shipley.sem$Live
f1 <- predEff(m, unique.eff = FALSE, re.form = NULL, type = "response")
f2 <- fitted(m)
stopifnot(all.equal(f1, f2))

# Compare predictions using standardised vs. raw effects (same)
f1 <- predEff(m)
f2 <- predEff(m, use.raw = TRUE)
stopifnot(all.equal(f1, f2))

print.bootCI Print "bootCI" Objects

Description

A print() method for an object of class "bootCI".

Usage

## S3 method for class 'bootCI'
print(x, ...)
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Arguments

x An object of class "bootCI".

... Further arguments passed to or from other methods. Not currently used.

Value

A summary table of the effects and bootstrapped confidence intervals (data frame).

print.semEff Print "semEff" Objects

Description

A print() method for an object of class "semEff".

Usage

## S3 method for class 'semEff'
print(x, ...)

Arguments

x An object of class "semEff".

... Further arguments passed to or from other methods. Not currently used.

Details

This print method returns a summary table for the SEM variables, giving their status as exogenous
or endogenous and as predictor, mediator and/or response. It also gives the number of direct vs.
indirect paths leading to each variable, and the number of correlated errors (if applicable).

Value

A summary table for the SEM variables (data frame).



22 pSapply

pSapply Parallel sapply()

Description

Apply a function to a vector using parallel processing.

Usage

pSapply(
X,
FUN,
parallel = c("snow", "multicore", "no"),
ncpus = NULL,
cl = NULL,
add.obj = NULL,
...

)

Arguments

X A vector object (numeric, character, or list).

FUN Function to apply to the elements of X.

parallel The type of parallel processing to use. Can be one of "snow" (default), "multicore"
(not available on Windows), or "no" (for none). See Details.

ncpus Number of system cores to use for parallel processing. If NULL (default), all
available cores are used.

cl Optional cluster to use if parallel = "snow". If NULL (default), a local cluster
is created using the specified number of cores.

add.obj A character vector of any additional object names to be exported to the cluster.
Use if a required object or function cannot be found.

... Additional arguments to parSapply(), mcmapply(), or sapply() (note: argu-
ments "simplify" and "SIMPLIFY" are both allowed).

Details

This is a wrapper for parallel::parSapply() ("snow") or parallel::mcmapply() ("multicore"),
enabling (potentially) faster processing of a function over a vector of objects. If parallel = "no",
sapply() is used instead.

Parallel processing via option "snow" (default) is carried out using a cluster of workers, which is
automatically set up via makeCluster() using all available system cores or a user supplied num-
ber of cores. The function then exports the required objects and functions to this cluster using
clusterExport(), after performing a (rough) match of all objects and functions in the current
global environment to those referenced in the call to FUN (and also any calls in X). Any additional
required object names can be supplied using add.obj.

https://rdrr.io/r/parallel/unix/mclapply.html
https://rdrr.io/r/parallel/unix/mclapply.html


R2 23

Value

The output of FUN in a list, or simplified to a vector or array.

R2 R-squared

Description

Calculate (Pseudo) R-squared for a fitted model, defined here as the squared multiple correlation be-
tween the observed and fitted values for the response variable. ’Adjusted’ and ’Predicted’ versions
are also calculated (see Details).

Usage

R2(
mod,
data = NULL,
adj = TRUE,
pred = TRUE,
offset = FALSE,
re.form = NULL,
type = c("pearson", "spearman"),
adj.type = c("olkin-pratt", "ezekiel"),
positive.only = TRUE,
env = NULL

)

Arguments

mod A fitted model object, or a list or nested list of such objects.
data An optional dataset, used to first refit the model(s).
adj, pred Logical. If TRUE (default), adjusted and/or predicted R-squared are also returned

(the latter is not available for all model types).
offset Logical. If TRUE, include model offset(s) in the calculations (i.e. in the response

variable and fitted values).
re.form For mixed models of class "merMod", the formula for random effects to condi-

tion on when generating fitted values used in the calculation of R-squared. De-
faults to NULL, meaning all random effects are included. See lme4:::predict.merMod()
for further specification details.

type The type of correlation coefficient to use. Can be "pearson" (default) or "spearman".
adj.type The type of adjusted R-squared estimator to use. Can be "olkin-pratt" (de-

fault) or "ezekiel". See Details.
positive.only Logical, whether to return only positive values for R-squared (negative values

replaced with zero).
env Environment in which to look for model data (if none supplied). Defaults to the

formula() environment.

https://rdrr.io/cran/lme4/man/predict.merMod.html
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Details

Various approaches to the calculation of a goodness of fit measure for GLMs analogous to R-squared
in the ordinary linear model have been proposed. Generally termed ’pseudo R-squared’ measures,
they include variance-based, likelihood-based, and distribution-specific approaches. Here however,
a more straightforward definition is used, which can be applied to any model for which fitted values
of the response variable are generated: R-squared is calculated as the squared (weighted) correla-
tion between the observed and fitted values of the response (in the original units). This is simply the
squared version of the correlation measure advocated by Zheng & Agresti (2000), itself an intuitive
measure of goodness of fit describing the predictive power of a model. As the measure does not
depend on any specific error distribution or model estimating procedure, it is also generally com-
parable across many different types of model (Kvalseth, 1985). In the case of the ordinary linear
model, the measure is exactly equal to the traditional R-squared based on sums of squares.

If adj = TRUE (default), the ’adjusted’ R-squared value is also returned, which provides an estimate
of the population – as opposed to sample – R-squared. This is achieved via an analytical formula
which adjusts R-squared using the ’degrees of freedom’ of the model (i.e. the ratio of observations
to parameters), helping to counter multiple R-squared’s positive bias and guard against overfitting
of the model to noise in the original sample. By default, this is calculated via the exact ’Olkin-Pratt’
estimator, shown in recent simulations to be the optimal unbiased population R-squared estimator
across a range of estimators and specification scenarios (Karch, 2020), and thus a good general
first choice, even for smaller sample sizes. Setting adj.type = "ezekiel" however will use the
simpler and more common ’Ezekiel’ formula, which can be more appropriate where minimising
the mean squared error (MSE) of the estimate is more important than strict unbiasedness (Hittner,
2019; Karch, 2020).

If pred = TRUE (default), a ’predicted’ R-squared is also returned, which is calculated via the same
formula as for R-squared but using cross-validated, rather than original, fitted values. These are ob-
tained by dividing the model residuals (in the response scale) by the complement of the observation
leverages (diagonals of the hat matrix), then subtracting these inflated ’predicted’ residuals from the
response variable. This is essentially a short cut to obtaining ’out-of-sample’ predictions, normally
arising via a ’leave-one-out’ cross-validation procedure (they are not exactly equal for GLMs). The
resulting R-squared is an estimate of the R-squared that would result were the model fit to new data,
and will be lower than the original – and likely also the adjusted – R-squared, highlighting the loss
of explanatory power due to sample noise. Predicted R-squared may be a more powerful and gen-
eral indicator of overfitting than adjusted R-squared, as it provides a true out-of-sample test. This
measure is a variant of an existing one, calculated by substituting the ’PRESS’ statistic, i.e. the sum
of squares of the predicted residuals (Allen, 1974), for the residual sum of squares in the classic
R-squared formula. It is not calculated here for GLMMs, as the interpretation of the hat matrix is
not reliable (see lme4:::hatvalues.merMod()).

For models fitted with one or more offsets, these will be removed by default from the response
variable and fitted values prior to calculations. Thus R-squared will measure goodness of fit only
for the predictors with estimated, rather than fixed, coefficients. This is likely to be the intended
behaviour in most circumstances, though if users wish to include variation due to the offset(s) they
can set offset = TRUE.

For mixed models, the function will, by default, calculate all R-squared measures using fitted values
incorporating both the fixed and random effects, thus encompassing all variation captured by the
model. This is equivalent to the ’conditional’ R-squared of Nakagawa et al. (2017) (though see that
reference for a more advanced approach to R-squared for mixed models). To include only some
or no random effects, simply set the appropriate formula using the argument re.form, which is

https://stats.stackexchange.com/questions/242770/difference-between-adjusted-r-squared-and-predicted-r-squared
https://stats.stackexchange.com/questions/242770/difference-between-adjusted-r-squared-and-predicted-r-squared
https://www.r-bloggers.com/2014/05/can-we-do-better-than-r-squared/
https://rdrr.io/cran/lme4/man/hatvalues.merMod.html
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passed directly to lme4:::predict.merMod(). If re.form = NA, R-squared is calculated for the
fixed effects only, i.e. the ’marginal’ R-squared of Nakagawa et al. (2017).

As R-squared is calculated here as a squared correlation, the type of correlation coefficient can
also be specified. Setting this to "spearman" may be desirable in some cases, such as where the
relationship between response and fitted values is not necessarily bivariate normal or linear, and
a correlation of the ranks may be more informative and/or general. This purely monotonic R-
squared can also be considered a useful goodness of fit measure, and may be more appropriate for
comparisons between GLMs and ordinary linear models in some scenarios.

R-squared values produced by this function will by default be in the range 0-1, meaning that any
negative values arising from calculations will be converted to zero. Negative values essentially
mean that the fit is ’worse’ than the null expectation of no relationship between the variables, which
can be difficult to interpret in practice and in any case usually only occurs in rare situations, such as
where the intercept is suppressed or where a low value of R-squared is adjusted downwards via an
analytic estimator. Such values are also ’impossible’ in practice, given that R-squared is a strictly
positive measure (as generally known). Hence, for simplicity and ease of interpretation, values
less than zero are presented as a complete lack of model fit. This is also recommended by Shieh
(2008), who shows for adjusted R-squared that such ’positive-part’ estimators have lower MSE
in estimating the population R-squared (though higher bias). To allow return of negative values
however, set positive.only = FALSE. This may be desirable for simulation purposes, and/or where
strict unbiasedness is prioritised.

Value

A numeric vector of the R-squared value(s), or an array, list of vectors/arrays, or nested list.

Note

Caution must be exercised in interpreting the values of any pseudo R-squared measure calculated
for a GLM or mixed model (including those produced by this function), as such measures do not
hold all the properties of R-squared in the ordinary linear model and as such may not always behave
as expected. Care must also be taken in comparing the measures to their equivalents from ordinary
linear models, particularly the adjusted and predicted versions, as assumptions and/or calculations
may not generalise well. With that being said, the value of standardised R-squared measures for
even ’rough’ model fit assessment and comparison may outweigh such reservations, and the adjusted
and predicted versions in particular may aid the user in diagnosing and preventing overfitting. They
should NOT, however, replace other measures such as AIC or BIC for formally comparing and/or
ranking competing models fit to the same response variable.
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Examples

# Pseudo R-squared for mixed models
R2(shipley.sem) # fixed + random ('conditional')
R2(shipley.sem, re.form = ~ (1 | tree)) # fixed + 'tree'
R2(shipley.sem, re.form = ~ (1 | site)) # fixed + 'site'
R2(shipley.sem, re.form = NA) # fixed only ('marginal')
R2(shipley.sem, re.form = NA, type = "spearman") # using Spearman's Rho

# Predicted R-squared: compare cross-validated predictions calculated/
# approximated via the hat matrix to standard method (leave-one-out)

# Fit test models using Shipley data – compare lm vs glm
d <- na.omit(shipley)
m <- lm(Live ~ Date + DD + lat, d)
# m <- glm(Live ~ Date + DD + lat, binomial, d)

# Manual CV predictions (leave-one-out)
cvf1 <- sapply(1:nrow(d), function(i) {

m.ni <- update(m, data = d[-i, ])
predict(m.ni, d[i, ], type = "response")

})

# Short-cut via the hat matrix
y <- getY(m)
f <- fitted(m)
cvf2 <- y - (y - f) / (1 - hatvalues(m))

# Compare predictions (not exactly equal for GLMs)
all.equal(cvf1, cvf2)
# lm: TRUE; glm: "Mean relative difference: 1.977725e-06"
cor(cvf1, cvf2)
# lm: 1; glm: 0.9999987

# NOTE: comparison not tested here for mixed models, as hierarchical data can
# complicate the choice of an appropriate leave-one-out procedure. However,
# there is no obvious reason why use of the leverage values (diagonals of the
# hat matrix) to estimate CV predictions shouldn't generalise, roughly, to
# the mixed model case (at least for LMMs). In any case, users should
# exercise the appropriate caution in interpretation.

https://doi.org/10/gddpnq
https://doi.org/10/bcwqf3
https://doi.org/10/bcwqf3
https://doi.org/10/db7rfv
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rMapply Recursive mapply()

Description

Recursively apply a function to a list or lists.

Usage

rMapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)

Arguments

FUN Function to apply.

... Object(s) to which FUN can be applied, or lists of such objects to iterate over
(defined narrowly, as of class "list").

MoreArgs A list of additional arguments to FUN.

SIMPLIFY Logical, whether to simplify the results to a vector or array.

USE.NAMES Logical, whether to use the names of the first list object in ... for the output.

Details

rMapply() recursively applies FUN to the elements of the lists in ... via mapply(). If only a single
list is supplied, the function acts like a recursive version of sapply(). The particular condition that
determines if the function should stop recursing is if either the first or second objects in ... are not
of class "list". Thus, unlike mapply(), it will not iterate over non-list elements in these objects,
but instead returns the output of FUN(...).

This is primarily a convenience function used internally to enable recursive application of functions
to lists or nested lists. Its particular stop condition for recursing is also designed to either a) act as
a wrapper for FUN if the first object in ... is not a list, or b) apply a weighted averaging operation
if the first object is a list and the second object is a numeric vector of weights.

Value

The output of FUN in a list or nested list, or simplified to a vector or array (or list of arrays).
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RVIF Root Variance Inflation Factors

Description

Calculate root variance inflation factors (RVIF) for terms in a fitted model(s), i.e. the square root of
the (generalised) VIFs.

Usage

RVIF(...)

Arguments

... Arguments to VIF().

Details

RVIFs quantify the inflation of estimate standard errors due to multicollinearity among predictors,
and also of estimates themselves compared to the ’unique’ (residualised) effects. RVIFs may often
be more practical than VIFs for assessing multicollinearity, relating more directly to the parameters
of interest.

Value

A numeric vector of the RVIFs, or an array, list of vectors/arrays, or nested list.

sdW Weighted Standard Deviation

Description

Calculate the weighted standard deviation of x.

Usage

sdW(...)

Arguments

... Arguments to varW().

Details

This is simply a wrapper for varW(), applying the square root to the output.



semEff 29

Value

A numeric value, the weighted standard deviation of x.

See Also

sd()

semEff SEM Effects

Description

Automatically calculate direct, indirect, total, and mediator effects for endogenous (response) vari-
ables in a ’piecewise’ structural equation model (SEM).

Usage

semEff(
sem,
predictors = NULL,
mediators = NULL,
excl.other.med = FALSE,
use.raw = FALSE,
ci.conf = 0.95,
ci.type = "bca",
digits = 3,
bci.arg = NULL,
...

)

Arguments

sem A piecewise SEM, comprising a list of fitted model objects or of boot objects
(containing bootstrapped model effects). Alternatively, a "psem" object from
piecewiseSEM::psem(). If list is unnamed, response variable names will be
used.

predictors, mediators
Names of variables for/through which to calculate effects. If NULL (default), all
predictors/mediators in the SEM will be used.

excl.other.med Logical, whether to exclude other SEM mediators from calculating indirect ef-
fects, i.e., those not specified in the mediators argument. Useful for examining
individual effect pathways with only the specified mediators, rather than includ-
ing all paths involving them (default). Ignored if mediators = NULL.

use.raw Logical, whether to use ’raw’ (unstandardised) effects for all calculations (if
present in sem).

https://rdrr.io/cran/piecewiseSEM/man/psem.html
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ci.conf A numeric value specifying the confidence level for confidence intervals on ef-
fects.

ci.type The type of confidence interval to return (defaults to "bca" – see Details). See
boot::boot.ci() for further specification details.

digits The number of decimal places to return for numeric values (for summary tables).

bci.arg A named list of any additional arguments to boot::boot.ci(), excepting argu-
ment index.

... Arguments to bootEff().

Details

The eponymous function of this package calculates all direct, indirect, total, and mediator effects
for a ’piecewise’ structural equation model (SEM), that is, one where parameter estimation is lo-
cal rather than global (Lefcheck, 2016; Shipley, 2000, 2009). The SEM simply takes the form
of a list of fitted models, or bootstrapped estimates from such models, describing hypothesised
causal pathways from predictors to response (’endogenous’) variables. These are either direct, or
operate indirectly via other response variables (’mediators’). This list should represent a directed
(’acyclic’) causal model, which should be named exactly for each response variable and ordered
from ’upstream’ or ’causal’ variables through to ’downstream’ (i.e. those at the end of the path-
way). If sem is a list of fitted models, effects will first be bootstrapped using bootEff() (this may
take a while!).

Direct effects are calculated as fully standardised model coefficients for each response variable
(see stdEff() for details), while indirect effects are the product of these direct effects operating
along causal pathways in the SEM. The total effects of any given predictor on a response are then
the sum of its direct and (all) its indirect effects. ’Mediator effects’ are also calculated, as the
sum of all indirect paths which operate through each individual mediator – useful to assess the
relative importance of different mediators in affecting the response. All of these effect types can
be calculated automatically for all (default) or for a specified subset of predictors and/or mediators
in the SEM. As indirect, total, and mediator effects are not directly bootstrapped using the fitted
models for response variables (i.e. via bootEff()), their equivalent ’bootstrapped’ estimates are
calculated instead using each bootstrapped direct effect.

Confidence intervals for all effects are returned in summary tables for each response (see bootCI()),
with BCa intervals calculated by default using the bootstrapped estimates for each effect type (Che-
ung, 2009; Hayes & Scharkow, 2013; MacKinnon et al., 2004). Effects for which the confidence
intervals do not contain zero are highlighted with a star (i.e. ’significant’ at the ci.conf level).
Bootstrap standard errors (standard deviations of the samples) and biases (sample means minus
original estimates) are also included. Correlated errors (and confidence intervals) are also returned
if their bootstrapped values are present in sem, or if they are specified to argument cor.err or as
part of a "psem" object (see bootEff()). These represent residual relationships among response
variables, unaccounted for by the hypothesised SEM paths. Use summary() for effect summary
tables and print() to return a table of variable names and associated details.

All calculated effects and bootstrapped effects are also returned in lists for each response variable,
with all except mediator effects also including the model intercept(s) – required for prediction (these
will be zero for ordinary linear models with fully standardised effects). Effects can be conveniently
extracted with getEff() and related functions.
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Value

A list object of class "semEff" for which several methods and extractor functions are available.
Contains:

1. Summary tables of effects and confidence intervals

2. All effects

3. All bootstrapped effects

4. All indirect effects (individual, not summed)

References

Cheung, M. W. L. (2009). Comparison of methods for constructing confidence intervals of stan-
dardized indirect effects. Behavior Research Methods, 41(2), 425-438. doi:10/fnx7xk

Hayes, A. F., & Scharkow, M. (2013). The Relative Trustworthiness of Inferential Tests of the Indi-
rect Effect in Statistical Mediation Analysis: Does Method Really Matter? Psychological Science,
24(10), 1918-1927. doi:10/bbhr

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in R for ecology,
evolution, and systematics. Methods in Ecology and Evolution, 7(5), 573-579. doi:10/f8s8rb

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence Limits for the Indirect
Effect: Distribution of the Product and Resampling Methods. Multivariate Behavioral Research,
39(1), 99. doi:10/chqcnx

Shipley, B. (2000). A New Inferential Test for Path Models Based on Directed Acyclic Graphs.
Structural Equation Modeling: A Multidisciplinary Journal, 7(2), 206-218. doi:10/cqm32d

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. doi:10/bqd43d

Examples

# SEM effects
(shipley.sem.eff <- semEff(shipley.sem.boot))
summary(shipley.sem.eff)

# Effects for selected variables
summary(shipley.sem.eff, response = "Live")
# summary(semEff(shipley.sem.boot, predictor = "lat"))
# summary(semEff(shipley.sem.boot, mediator = "DD"))

# Effects calculated using original SEM (models)
# (not typically recommended – better to use saved boot objects)
# system.time(
# shipley.sem.eff <- semEff(shipley.sem, R = 1000, seed = 13,
# ran.eff = "site")
# )

https://doi.org/10/fnx7xk
https://doi.org/10/bbhr
https://doi.org/10/f8s8rb
https://doi.org/10/chqcnx
https://doi.org/10/cqm32d
https://doi.org/10/bqd43d
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shipley Simulated Data from Shipley (2009)

Description

Simulated Data from Shipley (2009)

Usage

shipley

Format

A data frame with 1900 observations and 9 variables:

site a numeric code giving the site from which the observation comes

tree a numeric code giving the tree from which the observation comes

lat the latitude of the site

year the year in which the observation was taken

Date the Julian date when the bud burst occurs

DD the number of degree days when bud burst occurs

Growth the increase in diameter growth of the tree

Survival the probability of survival until the next year (used only for the simulation)

Live a binary value (1 = tree lived the following winter, 0 = tree died the following winter)

Source

doi:10/c886

References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. doi:10/bqd43d

https://doi.org/10/c886
https://doi.org/10/bqd43d
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shipley.growth Candidate Model Set from Shipley ’Growth’ Model

Description

A set of hypothetical competing models fit to the same response variable (’Growth’) using the
simulated data in Shipley (2009), for which model estimates can be compared and/or averaged.

Usage

shipley.growth

Format

A list of mixed models of class "lmer" and "glmer", fit to the same response variable.

References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. doi:10/bqd43d

Examples

# Specification
# shipley.growth <- list(
# lme4::lmer(Growth ~ Date + (1 | site) + (1 | tree), data = shipley),
# lme4::lmer(Growth ~ Date + DD + (1 | site) + (1 | tree), data = shipley),
# lme4::lmer(Growth ~ Date + DD + lat + (1 | site) + (1 | tree),
# data = shipley)
# )

shipley.sem Hypothesised SEM from Shipley (2009)

Description

Hypothesised SEM from Shipley (2009)

Usage

shipley.sem

Format

A list of fitted mixed models of class "lmer" and "glmer", representing structured equations.

https://doi.org/10/bqd43d
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References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. doi:10/bqd43d

Examples

# Specification
# shipley.sem <- list(
# DD = lme4::lmer(DD ~ lat + (1 | site) + (1 | tree), data = shipley),
# Date = lme4::lmer(Date ~ DD + (1 | site) + (1 | tree), data = shipley),
# Growth = lme4::lmer(Growth ~ Date + (1 | site) + (1 | tree),
# data = shipley),
# Live = lme4::glmer(Live ~ Growth + (1 | site) + (1 | tree), binomial,
# data = shipley)
# )

shipley.sem.boot Bootstrapped Estimates for Shipley SEM

Description

Bootstrapped estimates generated from the hypothesised SEM from Shipley (2009), using bootEff().

Usage

shipley.sem.boot

Format

A list of objects of class "boot", representing bootstrapped estimates from fitted mixed models.

References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. doi:10/bqd43d

Examples

# Specification
# shipley.sem.boot <- bootEff(shipley.sem, R = 1000, seed = 13,
# ran.eff = "site")

https://doi.org/10/bqd43d
https://doi.org/10/bqd43d
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shipley.sem.eff Effects for Shipley SEM

Description

SEM effects calculated from bootstrapped estimates of the hypothesised SEM from Shipley (2009),
using semEff().

Usage

shipley.sem.eff

Format

A list object of class "semEff", containing SEM effects and summary tables.

References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. doi:10/bqd43d

Examples

# Specification
# shipley.sem.eff <- semEff(shipley.sem.boot)

stdEff Standardised Effects

Description

Calculate fully standardised effects (model coefficients) in standard deviation units, adjusted for
multicollinearity.

Usage

stdEff(
mod,
weights = NULL,
data = NULL,
term.names = NULL,
unique.eff = TRUE,
cen.x = TRUE,
cen.y = TRUE,
std.x = TRUE,
std.y = TRUE,

https://doi.org/10/bqd43d
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refit.x = TRUE,
incl.raw = FALSE,
R.squared = FALSE,
R2.arg = NULL,
env = NULL

)

Arguments

mod A fitted model object, or a list or nested list of such objects.

weights An optional numeric vector of weights to use for model averaging, or a named
list of such vectors. The former should be supplied when mod is a list, and the
latter when it is a nested list (with matching list names). If set to "equal", a
simple average is calculated instead.

data An optional dataset, used to first refit the model(s).

term.names An optional vector of names used to extract and/or sort effects from the output.

unique.eff Logical, whether unique effects should be calculated (adjusted for multicollinear-
ity among predictors).

cen.x, cen.y Logical, whether effects should be calculated as if from mean-centred variables.

std.x, std.y Logical, whether effects should be scaled by the standard deviations of variables.

refit.x Logical, whether the model should be refit with mean-centred predictor vari-
ables (see Details).

incl.raw Logical, whether to append the raw (unstandardised) effects to the output.

R.squared Logical, whether R-squared values should also be calculated (via R2()).

R2.arg A named list of additional arguments to R2() (where applicable), excepting ar-
gument env. Ignored if R.squared = FALSE.

env Environment in which to look for model data (if none supplied). Defaults to the
formula() environment.

Details

stdEff() will calculate fully standardised effects (coefficients) in standard deviation units for a
fitted model or list of models. It achieves this via adjusting the ’raw’ model coefficients, so no
standardisation of input variables is required beforehand. Users can simply specify the model with
all variables in their original units and the function will do the rest. However, the user is free to
scale and/or centre any input variables should they choose, which should not affect the outcome
of standardisation (provided any scaling is by standard deviations). This may be desirable in some
cases, such as to increase numerical stability during model fitting when variables are on widely
different scales.

If arguments cen.x or cen.y are TRUE, effects will be calculated as if all predictors (x) and/or the
response variable (y) were mean-centred prior to model-fitting (including any dummy variables
arising from categorical predictors). Thus, for an ordinary linear model where centring of x and y is
specified, the intercept will be zero – the mean (or weighted mean) of y. In addition, if cen.x = TRUE
and there are interacting terms in the model, all effects for lower order terms of the interaction are
adjusted using an expression which ensures that each main effect or lower order term is estimated
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at the mean values of the terms they interact with (zero in a ’centred’ model) – typically improving
the interpretation of effects. The expression used comprises a weighted sum of all the effects that
contain the lower order term, with the weight for the term itself being zero and those for ’containing’
terms being the product of the means of the other variables involved in that term (i.e. those not in
the lower order term itself). For example, for a three-way interaction (x1 * x2 * x3), the expression
for main effect β1 would be:

β1 + β12x̄2 + β13x̄3 + β123x̄2x̄3

(adapted from here)

In addition, if std.x = TRUE or unique.eff = TRUE (see below), product terms for interactive effects
will be recalculated using mean-centred variables, to ensure that standard deviations and variance
inflation factors (VIF) for predictors are calculated correctly (the model must be refit for this latter
purpose, to recalculate the variance-covariance matrix).

If std.x = TRUE, effects are scaled by multiplying by the standard deviations of predictor variables
(or terms), while if std.y = TRUE they are divided by the standard deviation of the response variable
(minus any offsets). If the model is a GLM, this latter is calculated using the link-transformed
response (or an estimate of same) generated using the function glt(). If both arguments are true,
the effects are regarded as ’fully’ standardised in the traditional sense, often referred to as ’betas’.

If unique.eff = TRUE (default), effects are adjusted for multicollinearity among predictors by di-
viding by the square root of the VIFs (Dudgeon, 2016; Thompson et al., 2017; RVIF()). If they
have also been scaled by the standard deviations of x and y, this converts them to semipartial cor-
relations, i.e. the correlation between the unique components of predictors (residualised on other
predictors) and the response variable. This measure of effect size is arguably much more inter-
pretable and useful than the traditional standardised coefficient, as it always represents the unique
effects of predictors and so can more readily be compared both within and across models. Values
range from zero to +/- one rather than +/- infinity (as in the case of betas) – putting them on the same
scale as the bivariate correlation between predictor and response. In the case of GLMs however,
the measure is analogous but not exactly equal to the semipartial correlation, so its values may not
always be bound between +/- one (such cases are likely rare). Importantly, for ordinary linear mod-
els, the square of the semipartial correlation equals the increase in R-squared when that variable is
included last in the model – directly linking the measure to unique variance explained. See here for
additional arguments in favour of the use of semipartial correlations.

If refit.x, cen.x, and unique.eff are TRUE and there are interaction terms in the model, the
model will be refit with any (newly-)centred continuous predictors, in order to calculate correct
VIFs from the variance-covariance matrix. However, refitting may not be necessary in some cir-
cumstances, for example where predictors have already been mean-centred, and whose values will
not subsequently be resampled (e.g. parametric bootstrap). Setting refit.x = FALSE in such cases
will save time, especially with larger/more complex models and/or bootstrap runs.

If incl.raw = TRUE, raw (unstandardised) effects can also be appended, i.e. those with all centring
and scaling options set to FALSE (though still adjusted for multicollinearity, where applicable).
These may be of interest in some cases, for example to compare their bootstrapped distributions
with those of standardised effects.

If R.squared = TRUE, model R-squared values are appended to effects via the R2() function, with
any additional arguments passed via R2.arg.

Finally, if weights are specified, the function calculates a weighted average of standardised effects
across a set (or sets) of different candidate models for a particular response variable(s) (Burnham &

https://stats.stackexchange.com/questions/65898/why-could-centering-independent-variables-change-the-main-effects-with-moderatio
https://www.daviddisabato.com/blog/2016/4/8/on-effect-sizes-in-multiple-regression
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Anderson, 2002), via the avgEst() function.

Value

A numeric vector of the standardised effects, or a list or nested list of such vectors.

References

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Prac-
tical Information-Theoretic Approach (2nd ed.). Springer-Verlag. https://link.springer.com/
book/10.1007/b97636

Dudgeon, P. (2016). A Comparative Investigation of Confidence Intervals for Independent Variables
in Linear Regression. Multivariate Behavioral Research, 51(2-3), 139-153. doi:10/gfww3f

Thompson, C. G., Kim, R. S., Aloe, A. M., & Becker, B. J. (2017). Extracting the Variance Inflation
Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic and Applied
Social Psychology, 39(2), 81-90. doi:10/gfww2w

Examples

library(lme4)

# Standardised (direct) effects for SEM
m <- shipley.sem
stdEff(m)
stdEff(m, cen.y = FALSE, std.y = FALSE) # x-only
stdEff(m, std.x = FALSE, std.y = FALSE) # centred only
stdEff(m, cen.x = FALSE, cen.y = FALSE) # scaled only
stdEff(m, unique.eff = FALSE) # include multicollinearity
stdEff(m, R.squared = TRUE) # add R-squared
stdEff(m, incl.raw = TRUE) # add unstandardised

# Demonstrate equality with effects from manually-standardised variables
# (gaussian models only)
m <- shipley.growth[[3]]
d <- data.frame(scale(na.omit(shipley)))
e1 <- stdEff(m, unique.eff = FALSE)
e2 <- coef(summary(update(m, data = d)))[, 1]
stopifnot(all.equal(e1, e2))

# Demonstrate equality with square root of increment in R-squared
# (ordinary linear models only)
m <- lm(Growth ~ Date + DD + lat, data = shipley)
r2 <- summary(m)$r.squared
e1 <- stdEff(m)[-1]
en <- names(e1)
e2 <- sapply(en, function(i) {

f <- reformulate(en[!en %in% i])
r2i <- summary(update(m, f))$r.squared
sqrt(r2 - r2i)

})
stopifnot(all.equal(e1, e2))

https://link.springer.com/book/10.1007/b97636
https://link.springer.com/book/10.1007/b97636
https://doi.org/10/gfww3f
https://doi.org/10/gfww2w
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# Model-averaged standardised effects
m <- shipley.growth # candidate models
w <- runif(length(m), 0, 1) # weights
stdEff(m, w)

summary.semEff Summarise SEM Effects

Description

A summary() method for an object of class "semEff".

Usage

## S3 method for class 'semEff'
summary(object, responses = NULL, ...)

Arguments

object An object of class "semEff".

responses An optional character vector, the names of one or more SEM response variables
for which to return summaries (and/or "Correlated Errors", where applica-
ble). Can also be a numeric vector of indices of object. If NULL (default), all
summaries are returned.

... Further arguments passed to or from other methods. Not currently used.

Details

This summary method prints tables of effects and confidence intervals for SEM endogenous (re-
sponse) variables.

Value

A summary table or tables of effects for the endogenous variables (data frames).
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varW Weighted Variance

Description

Calculate the weighted variance of x.

Usage

varW(x, w = NULL, na.rm = FALSE)

Arguments

x A numeric vector.

w A numeric vector of weights of the same length as x.

na.rm Logical, whether NAs in x should be removed.

Details

Calculate the weighted variance of x via the weighted covariance matrix (cov.wt()). If no weights
are supplied, the simple variance is returned instead. As in weighted.mean(), NAs in w are not
handled specially and will return NA as result.

Value

A numeric value, the weighted variance of x.

See Also

var()

Examples

# Weighted variance
x <- rnorm(30)
w <- runif(30, 0, 1)
varW(x, w)

# Simple variance
varW(x)
stopifnot(varW(x) == var(x))

# NA handling
varW(c(x[1:29], NA), w, na.rm = TRUE) # NA in x (removed)
varW(c(x[1:29], NA), w, na.rm = FALSE) # NA in x (NA returned)
varW(x[1:29], w = c(w[1:29], NA)) # NA in w (NA returned)
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VIF Generalised Variance Inflation Factors

Description

Calculate generalised variance inflation factors for terms in a fitted model(s) via the variance-
covariance matrix of coefficients.

Usage

VIF(mod, data = NULL, env = NULL)

Arguments

mod A fitted model object, or a list or nested list of such objects.

data An optional dataset, used to first refit the model(s).

env Environment in which to look for model data (if none supplied). Defaults to the
formula() environment.

Details

VIF() calculates generalised variance inflation factors (GVIF) as described in Fox & Monette
(1992), and also implemented in car::vif(). However, whereas car::vif() returns both GVIF
and GVIF^(1/(2*Df)) values, VIF() simply returns the squared result of the latter measure, which
equals the standard VIF for single-coefficient terms and is the equivalent measure for multi-coefficient
terms (e.g. categorical or polynomial). Also, while car::vif() returns values per model term (i.e.
predictor variable), VIF() returns values per coefficient, meaning that the same value will be re-
turned per coefficient for multi-coefficient terms. Finally, NA is returned for any terms which could
not be estimated in the model (e.g. aliased).

Value

A numeric vector of the VIFs, or an array, list of vectors/arrays, or nested list.

References

Fox, J., & Monette, G. (1992). Generalized Collinearity Diagnostics. Journal of the American
Statistical Association, 87, 178-183. doi:10/dm9wbw

Examples

# Model with two correlated terms
m <- shipley.growth[[3]]
VIF(m) # Date & DD somewhat correlated
VIF(update(m, . ~ . - DD)) # drop DD

# Model with different types of predictor (some multi-coefficient terms)
d <- data.frame(

https://rdrr.io/cran/car/man/vif.html
https://doi.org/10/dm9wbw
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y = rnorm(100),
x1 = rnorm(100),
x2 = as.factor(rep(c("a", "b", "c", "d"), each = 25)),
x3 = rep(1, 100)

)
m <- lm(y ~ poly(x1, 2) + x2 + x3, data = d)
VIF(m)

xNam Get Model Term Names

Description

Extract term names from a fitted model object.

Usage

xNam(mod, intercept = TRUE, aliased = TRUE, list = FALSE, env = NULL)

Arguments

mod A fitted model object, or a list or nested list of such objects.

intercept Logical, whether the intercept should be included.

aliased Logical, whether names of aliased terms should be included (see Details).

list Logical, whether names should be returned as a list, with all multi-coefficient
terms grouped under their main term names.

env Environment in which to look for model data (used to construct the model
frame). Defaults to the formula() environment.

Details

Extract term names from a fitted model. Names of terms for which coefficients cannot be estimated
are also included if aliased = TRUE (default). These may be terms which are perfectly correlated
with other terms in the model, so that the model design matrix is rank deficient.

Value

A character vector or list/nested list of term names.

Examples

# Term names from Shipley SEM
m <- shipley.sem
xNam(m)
xNam(m, intercept = FALSE)

# Model with different types of predictor (some multi-coefficient terms)
d <- data.frame(
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y = rnorm(100),
x1 = rnorm(100),
x2 = as.factor(rep(c("a", "b", "c", "d"), each = 25)),
x3 = rep(1, 100)

)
m <- lm(y ~ poly(x1, 2) + x2 + x3, data = d)
xNam(m)
xNam(m, aliased = FALSE) # drop term that cannot be estimated (x3)
xNam(m, aliased = FALSE, list = TRUE) # names as list
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parallel, 8
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parSapply(), 22
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predict(), 19
print(), 20, 21
print.bootCI, 20
print.semEff, 21
pSapply, 22
pSapply(), 19

R2, 23
R2(), 36, 37
rMapply, 27
rMapply(), 7
RVIF, 28
RVIF(), 37

sapply(), 22, 27
sd(), 29
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semEff(), 10, 17, 35
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stdEff, 35
stdEff(), 7, 17, 18, 30
summary(), 39
summary.semEff, 39

var(), 40
varW, 40
varW(), 28
VIF, 41
VIF(), 28

weighted.mean(), 40

xNam, 42
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