
Package ‘sarp.snowprofile.alignment’
August 25, 2024

Title Snow Profile Alignment, Aggregation, and Clustering

Version 2.0.2

Date 2024-08-25

Description Snow profiles describe the vertical (1D) stratigraphy of layered
snow with different layer characteristics, such as grain type, hardness,
deposition date, and many more. Hence, they represent a data format similar
to multivariate time series containing categorical, ordinal, and numerical
data types. Use this package to align snow profiles by matching their
individual layers based on Dynamic Time Warping (DTW). The aligned profiles
can then be assessed with an independent, global similarity measure that is
geared towards avalanche hazard assessment. Finally, through exploiting data
aggregation and clustering methods, the similarity measure provides the
foundation for grouping and summarizing snow profiles according to similar
hazard conditions. In particular, this package allows for averaging large
numbers of snow profiles with DTW Barycenter Averaging and thereby
facilitates the computation of individual layer distributions and summary
statistics that are relevant for avalanche forecasting purposes.
For more background information refer to Herla, Horton, Mair,
and Haegeli (2021) <doi:10.5194/gmd-14-239-2021>, Herla, Mair, and Haegeli
(2022) <doi:10.5194/tc-16-3149-2022>, and Horton, Herla, and Haegeli (2024)
<doi:10.5194/egusphere-2024-1609>.

URL https://avalancheresearch.ca/

License GPL (>= 3)

Encoding UTF-8

LazyData true

Language en-US

Imports cluster, dtw, grid, data.table

Depends R (>= 4.2), sarp.snowprofile (>= 1.2.1)

Suggests knitr, rmarkdown, shiny, dendextend, smacof, testthat,
progress, parallel

VignetteBuilder knitr

RoxygenNote 7.3.2

1

https://doi.org/10.5194/gmd-14-239-2021
https://doi.org/10.5194/tc-16-3149-2022
https://doi.org/10.5194/egusphere-2024-1609
https://avalancheresearch.ca/

2 Contents

NeedsCompilation no

Author Florian Herla [aut, cre],
Pascal Haegeli [aut],
Simon Horton [aut],
Paul Billecocq [aut],
SFU Avalanche Research Program [fnd]

Maintainer Florian Herla <fherla@sfu.ca>

Repository CRAN

Date/Publication 2024-08-25 14:00:01 UTC

Contents
averageSP . 3
averageSPalongSeason . 8
backtrackLayers . 11
chooseICavg . 13
clusterSP . 14
clusterSPcenters . 17
clusterSPconfig . 18
clusterSPkdba . 19
concat_avgSP_timeseries . 20
ddateDistance . 21
densityDistance . 22
distanceSP . 23
distanceSPlayers . 25
dtwSP . 27
extractFromScoringMatrix . 30
flipLayers . 31
grainSimilarity_align . 31
grainSimilarity_evaluate . 32
hardnessDistance . 33
interactiveAlignment . 34
layerWeightingMat . 35
match_with_tolerance . 35
medoidSP . 36
mergeIdentLayers . 37
ogsDistance . 38
plot.clusterSP . 39
plotCostDensitySP . 40
plotSPalignment . 42
puDistance . 44
resampleSP . 45
resampleSPpairs . 46
reScaleSampleSPx . 48
return_conceptually_similar_gtypes . 49
rmZeroThicknessLayers . 49

averageSP 3

scaleSnowHeight . 50
sim2dist . 51
simSP . 51
SPgroup2 . 55
SPspacetime . 56
swissSimilarityMatrix . 57
warpSP . 57
warpWindowSP . 59

Index 61

averageSP Average a group of snow profiles

Description

The functions dbaSP and averageSP implement Dynamic Time Warping Barycenter Averaging of
snow profiles. The convenient wrapper averageSP takes care of choosing several appropriate initial
conditions and picking the optimal end result (by minimizing the mean squared error between the
average profile and the profile set). To pay appropriate attention to (thin) weak layers, weak layers
need to be labeled in the profiles. You can either do that manually before calling this routine to suit
your personal needs, or you can provide specific properties (in classifyPWLs) so that weak layers
be labeled according to these properties by sarp.snowprofile::labelPWL. For more details, refer to
the reference paper.

Usage

averageSP(
SPx,
n = 5,
sm = summary(SPx),
progressbar = requireNamespace("progress", quietly = TRUE),
progressbar_pretext = NULL,
classifyPWLs = list(pwl_gtype = c("SH", "DH")),
classifyCRs = list(pwl_gtype = c("MFcr", "IF", "IFsc", "IFrc")),
proportionPWL = 0.5,
breakAtSim = 0.9,
breakAfter = 2,
verbose = FALSE,
tz = "auto",
n_cores = NULL,
...

)

dbaSP(
SPx,
Avg,
sm = summary(SPx),

4 averageSP

resamplingRate = 0.5,
proportionPWL = 0.3,
maxiter = 10,
breakAtSim = 0.99,
breakAfter = 1,
plotChanges = FALSE,
verbose = TRUE,
tz = "auto",
...

)

Arguments

SPx SPx a sarp.snowprofile::snowprofileSet object. Note that the profile layers need
to contain a column called $layerOfInterest which classifies weak layers.
While averageSP will label weak layers automatically if not done by the user
beforehand, dbaSP won’t do that but fail instead!; consider thinking about how
you want to label weak layers, see Description, classifyPWLs below, and the
references. Also note, that if you wish to average the rescaled profile set, do so
manually before calling this function (see examples).

n the number of initial conditions that will be used to run dbaSP; see also choose-
ICavg.

sm a summary of SPx metadata

progressbar should a progressbar be displayed (the larger n, the more meaningful the pro-
gressbar)

progressbar_pretext

a character string to be prepended to the progressbar (mainly used by higher
level cluster function)

classifyPWLs an argument list for a function call to sarp.snowprofile::findPWL which returns
relevant PWLs for identifying initial conditions. Importantly, these arguments
will also be used to label weak layers in the profiles, if these labels do not yet
exist in the layers objects as column $layerOfInterest. Check out the docu-
mentation of findPWL to familiarize yourself with your manifold options!

classifyCRs an argument list for a function call to sarp.snowprofile::findPWL which returns
relevant crusts for identifying initial conditions.

proportionPWL decimal number that specifies the proportion required to average an ensemble
of grain types as weak layer type. A value of 0.3, for example, means that
layers will get averaged to a PWL type if 30% of the layers are of PWL type.
Meaningful range is between [0.1, 0.5]. Values larger than 0.5 get set to 0.5.

breakAtSim stop iterations when simSP between the last average profiles is beyond that
value. Can range between [0, 1]. Default values differ between dbaSP and
averageSP.

breakAfter integer specifying how many values of simSP need to be above breakAtSim to
stop iterating. Default values differ between dbaSP and averageSP.

verbose print similarities between old and new average in between iterations?

averageSP 5

tz timezone of profiles; necessary for assigning the correct timezone to the average
profile’s ddate/bdate. Either 'auto' or a timezone known to [as.POSIXct].

n_cores number of nodes to create for a cluster using the parallel package to speed up
calculations (default = NULL)

... alignment configurations which are passed on to dbaSP and then further to
dtwSP. Note, that you can’t provide rescale2refHS, which is always set to
FALSE. If you wish to rescale the profiles, read the description of the SPx pa-
rameter and the examples.

Avg the initial average snow profile: either a sarp.snowprofile::snowprofile object or
an index to an initial average profile in SPx

resamplingRate Resampling rate for a regular depth grid among the profiles

maxiter maximum number of iterations

plotChanges specify whether and how you want to plot the dba process: either FALSE, ’TRUE==’iterations’, or ’av-
erages+last’‘

Details

Technical note: Since the layer characteristics of the average profile represent the median char-
acteristics of the individual profiles, it can happen that ddates of the averaged layers are not in a
monotonic order. That is, of course non-physical, but we specifically decided not to override these
values to highlight these slight inconsistencies to users, so that they can decide how to deal with
them. As a consequence, the function sarp.snowprofile::deriveDatetag does not work for these av-
erage profiles with ddate inconsistencies, but throws an error. The suggested workaround for this
issue is to apply that function to all individual profiles before computing the average profile. This
ensures that bdates or datetags are also included in the average profile.

For developers: Including new variables into the averaging/dba routines can be done easily by
following commit #9f9e6f9

Value

A list of class avgSP that contains the fields

• $avg: the resulting average profile
• $set: the corresponding resampled profiles of the group
• $call: (only with averageSP) the function call
• $prelabeledPWLs: (only with averageSP) boolean scalar whether PWLs (or any other lay-

ers of interest) were prelabeled before this routine (TRUE) or labeled by this routine with the
defaults specified in classifyPWLs (FALSE)

The profile layers of the average profile refer to the median properties of the predominant layers. For
example, if you labeled all SH/DH layers as your ’layersOfInterest’, and you find a SH or DH layer
in the average profile, then it means that the predominant grain type is SH/DH (i.e., more profiles
than specified in proportionPWL have that layer) and layer properties like hardness, p_unstable,
etc refer to the median properties of these SH/DH layers. If you find a RG layer in your average
profile, it means that most profiles have that RG layer and the layer properties refer to the median
properties of all these RG layers. There are two exceptions to this rule, one for height/depth, and
one for layer properties with the ending _all, such as ppu_all:

6 averageSP

• height and depth provide the vertical grid of the average profile, and for algorithmic rea-
sons, this grid is not always equal to the actual median height or depth of the predominant
layers. To account for that, two layer columns exist called medianPredominantHeight and
medianPredominantDepth.

• Properties ending with _all: For example, while ppu refers to the proportion of profiles,
whose predominant layers are unstable (i.e., p_unstable >= 0.77), ppu_all refers to the the
proportion of profiles, whose layers are unstable while taking into account all individual layers
matched to this average layer (i.e., despite grain type, etc).

• Other layer properties specific to the average profile: distribution ranges between [0, 1]
and specifies the proportion of profiles that contain the predominant layer described in the
other properties.

Functions

• averageSP(): convenient wrapper function

• dbaSP(): DTW barycenter averaging of snow profiles (low level worker function)

Author(s)

fherla

References

Herla, F., Haegeli, P., and Mair, P. (2022). A data exploration tool for averaging and accessing large
data sets of snow stratigraphy profiles useful for avalanche forecasting, The Cryosphere, 16(8),
3149–3162, https://doi.org/10.5194/tc-16-3149-2022

See Also

averageSPalongSeason

Examples

EXAMPLES OF averageSP
this_example_runs_about_10s <- TRUE
if (!this_example_runs_about_10s) { # exclude from cran checks

compute the average profile of the demo object 'SPgroup'
* by labeling SH/DH layers as weak layers,
- choosing 3 initial conditions with an above average number of weak layers
- in as many depth ranges as possible
* and neglecting crusts for initial conditions

avgList <- averageSP(SPgroup, n = 3,
classifyPWLs = list(pwl_gtype = c("SH", "DH")),
classifyCRs = NULL)

opar <- par(mfrow = c(1, 2))
plot(avgList$avg, ymax = max(summary(avgList$set)$hs))
plot(avgList$set, SortMethod = "unsorted", xticklabels = "originalIndices")

averageSP 7

par(opar)

compute the average profile of the demo object 'SPgroup'
* by labeling SH/DH/FC/FCxr layers with an RTA threshold of 0.65 as weak layers,
* otherwise as above

SPx <- computeRTA(SPgroup)
avgList <- averageSP(SPx, n = 3,

classifyPWLs = list(pwl_gtype = c("SH", "DH", "FC", "FCxr"),
threshold_RTA = 0.65),

classifyCRs = NULL)

opar <- par(mfrow = c(1, 2))
plot(avgList$avg, ymax = max(summary(avgList$set)$hs))
plot(avgList$set, SortMethod = "unsorted", xticklabels = "originalIndices")
par(opar)

compute the average profile of the other demo object 'SPgroup2', which
contains more stability indices, such as SK38 or p_unstable
* by labeling SH/DH/FC/FCxr layers that either
- have an SK38 below 0.95, *or*
- have a p_unstable above 0.77

SPx <- snowprofileSet(SPgroup2)
avgList <- averageSP(SPx,

classifyPWLs = list(pwl_gtype = c("SH", "DH", "FC", "FCxr"),
threshold_SK38 = 0.95, threshold_PU = 0.77))

opar <- par(mfrow = c(1, 2))
plot(avgList$avg, ymax = max(summary(avgList$set)$hs))
plot(avgList$set, SortMethod = "unsorted", xticklabels = "originalIndices")
par(opar)

}

EXAMPLES OF dbaSP
either rescale profiles beforehand...
if (FALSE) { # don't run in package check to save time

SPx <- reScaleSampleSPx(SPgroup)$set # rescale profiles
SPx <- snowprofileSet(lapply(SPx, labelPWL)) # label PWLs
DBA <- dbaSP(SPx, 5, plotChanges = TRUE) # average profiles

}

or use unscaled snow heights:
if (FALSE) { # don't run in package check to save time

SPx <- snowprofileSet(lapply(SPgroup, labelPWL)) # label PWLs
DBA <- dbaSP(SPx, 5, plotChanges = TRUE) # average profiles

}

8 averageSPalongSeason

averageSPalongSeason Compute a seasonal timeseries of an average snowprofile

Description

This routine computes the seasonal timeseries of the average snow profile for a given region/set
of profiles. The total snow height of the seasonal average profile closely follows the median snow
height represented by the group of profiles each day. Also the new snow amounts represent the
median new snow amounts within the group (i.e., PP and DF grains). The routine maintains tem-
poral consistency by using the previous day average profile as initial condition to derive the next
day’s. This creates the need for re-scaling the layer thicknesses each day to account for snow set-
tlement and melting. Two different re-scaling approaches have been implemented, which both aim
to re-scale the old snow part of the column (i.e., the snow which was on the ground already at the
previous day). See parameter description for more details. Also note, that the routine can be started
at any day of the season by providing an average profile from the previous day. The routine modifies
several parameters, which are passed on to dtwSP. These parameters differ from the defaults spec-
ified in dtwSP, which are held very generic, whereas the application in this function is much more
specific to certain requirements and algorithm behavior. For more details, refer to the reference
paper.

Usage

averageSPalongSeason(
SPx,
sm = summary(SPx),
AvgDayBefore = NULL,
DateEnd = max(sm$date),
keep.profiles = TRUE,
progressbar = requireNamespace("progress", quietly = TRUE),
dailyRescaling = c("settleTopOldSnow", "settleEntireOldSnow")[1],
proportionPWL = 0.3,
breakAtSim = 0.9,
breakAfter = 2,
verbose = FALSE,
resamplingRate = 0.5,
top.down = FALSE,
checkGlobalAlignment = FALSE,
prefLayerWeights = NA,
dims = c("gtype", "hardness", "ddate"),
weights = c(0.375, 0.125, 0.5),
...

)

Arguments

SPx a sarp.snowprofile::snowprofileSet that contains all profiles from the region to
be averaged at all days of the season for which you want to compute the average

averageSPalongSeason 9

profile. Identically to dbaSP, weak layers need to be labeled prior to this function
call, see dbaSP and sarp.snowprofile::labelPWL. Note that only daily sampling
is allowed at this point (i.e., one profile per grid point per day).

sm a summary of SPx containing meta-data

AvgDayBefore an average sarp.snowprofile::snowprofile from the previous day. This is only
necessary if you want to resume the computation mid season.

DateEnd an end date character string ("YYYY-MM-DD") if you only want to compute the
timeseries up to a certain point in time. Defaults to the future-most date con-
tained in the meta-data object sm.

keep.profiles Do you want to keep the (resampled) individual snow profiles from SPx in your
return object? Note that this must be TRUE if you plan to backtrackLayers to
derive any kind of summary statistics for the averaged layers. See Notes below,
and examples of how to conveniently backtrackLayers.

progressbar display a progress bar during computation?

dailyRescaling choose between two settlement rescaling approaches. settleEntireOldSnow
re-scales the entire old snow column so that the average snow height represents
the median snow height from the profile set. settleTopOldSnow (the default)
re-scales the upper part of the old snow column to achieve the same goal. While
the former mostly leads to buried layers being settled to too deep snow depths,
the default approach aims to leave those buried layers unchanged, which are
located at depths that represent the median depths of their aligned layers.

proportionPWL decimal number that specifies the proportion required to average an ensemble
of grain types as weak layer type. A value of 0.3, for example, means that
layers will get averaged to a PWL type if 30% of the layers are of PWL type.
Meaningful range is between [0.1, 0.5]. Values larger than 0.5 get set to 0.5.

breakAtSim stop iterations when simSP between the last average profiles is beyond that
value. Can range between [0, 1]. Default values differ between dbaSP and
averageSP.

breakAfter integer specifying how many values of simSP need to be above breakAtSim to
stop iterating. Default values differ between dbaSP and averageSP.

verbose print similarities between old and new average in between iterations?

resamplingRate Resampling rate for a regular depth grid among the profiles

top.down a dtwSP parameter, which needs to be set to FALSE to ensure correct growing of
the snowpack during snowfall.

checkGlobalAlignment

a dtwSP parameter, which needs to be set to FALSE analogous to top.down

prefLayerWeights

a dtwSP parameter. Might be best to set this to NA, but can potentially be set
to layerWeightingMat(FALSE) in case of averaging a very large geographic
region with temporal lags between weather events.

dims a dtwSP parameter, which is modified to include deposition date alignments per
default

weights a dtwSP parameter that sets the according weights to the dims specified above.

... any other parameters passed on to dbaSP and then dtwSP.

10 averageSPalongSeason

Details

Computing the seasonal average profile for an entire season and about 100 grid points (with a max
of 150 cm snow depth) takes roughly 60 mins.

Value

A list of class avgSP_timeseries containing the fields $avgs with a sarp.snowprofile::snowprofileSet
of the average profiles at each day. If keep.profiles == TRUE a field $sets with the according pro-
files informing the average profile at each day (which can be used to backtrackLayers to compute
summary statistics of the averaged layers). And two fields $call and $meta. The latter contains sev-
eral useful meta-information such as ...$date, ...$hs, ...$hs_median, ...$thicknessPPDF_median,
or ...$rmse, which gauges the representativity of the average profile (the closer to 0, the better; the
closer to 1, the worse).

Note

• If you don’t provide an AvgDayBefore, it will be computed with averageSP and default pa-
rameters (dots won’t be passed to initializing the first average profile)!

• Even though backtrackLayers allows for backtracking layers based on height, it is not rec-
ommended to try and backtrack layers if keep.profiles = FALSE, since profiles that can’t be
aligned to the average profile ($avgs[[i]]) are being discarded from the profile set at that day
($sets[[i]]), which changes queryIDs in the backtrackingTable. Conclusion: If you want
to backtrack layers from the seasonal average profile, you must keep.profiles = TRUE. See
examples!

Author(s)

fherla

References

Herla, F., Haegeli, P., and Mair, P. (2022). A data exploration tool for averaging and accessing large
data sets of snow stratigraphy profiles useful for avalanche forecasting, The Cryosphere, 16(8),
3149–3162, https://doi.org/10.5194/tc-16-3149-2022

See Also

dbaSP, averageSP, sarp.snowprofile::labelPWL

Examples

run_the_examples <- FALSE # exclude long-running examples
if (run_the_examples) {

compute average timeseries for simplistic example data set 'SPspacetime'
first: label weak layers (you can choose your own rules and thresholds!)
SPspacetime <- snowprofileSet(lapply(SPspacetime, function(sp) {
labelPWL(sp, pwl_gtype = c("SH", "DH", "FC", "FCxr"), threshold_RTA = 0.8)
})) # label weak layers in each profile of the profile set 'SPspacetime'

backtrackLayers 11

second: average along several days
avgTS <- averageSPalongSeason(SPspacetime)

explore resulting object
names(avgTS)

timeseries figure
plot(avgTS$avgs, main = "average time series")
add line representing median snow height
lines(avgTS$meta$date, avgTS$meta$hs_median)
add line representing median new snow amounts
lines(avgTS$meta$date, avgTS$meta$hs - avgTS$meta$thicknessPPDF_median, lty = 'dashed')

individual profile sets from one day
plot(avgTS$sets[[1]], SortMethod = "hs", main = "individual profiles from first day")

backtrack individual layers of the average profile...
individualLayers <- backtrackLayers(avgProfile = avgTS$avgs[[1]],

profileSet = avgTS$sets[[1]],
layer = findPWL(avgTS$avgs[[1]], pwl_gtype = c("SH", "DH"),

pwl_date = "2018-10-17", threshold_RTA = 0.8))
... to retrieve summary statistics or distributions, e.g. stability distribution
hist(individualLayers[[1]]$rta)
hist(individualLayers[[1]]$depth)

see the Vignette about averaging profiles for more examples!

}

backtrackLayers Backtrack layers from average or summary profile

Description

An average profile as computed by dbaSP summarizes the prevalent layer properties of the entire
profile set. To better understand the distribution of layer properties within the set, use this function
to retrieve layers of interest from the individual profiles of the original profile set.

Usage

backtrackLayers(
avgProfile,
layer = NA,
profileSet = NULL,
layer_units = "row#",
condition = NULL,
computationByHeight = FALSE

)

12 backtrackLayers

Arguments

avgProfile an average profile as per dbaSP

layer the height or row number of the layer to retrieve the distribution for (given as
height or row number of the average profile). If layer is NA, all layers from the
avgProfile are considered.

profileSet the profile set that is averaged by avgProfile. Optimally, it is the resampled
profile set as returned by dbaSP or averageSP, see parameter computationByHeight
if that resampled profile set is not available anymore.

layer_units either "row#" or "cm"

condition a condition that subsets which layers are returned. E.g., only layers with a spe-
cific grain type, etc.. Note that the condition needs to be substituted in the
function call, e.g. condition = substitute(gtype == "SH"). In most cases,
it’s best to subset the data.frame manually after this function has been called.
A secret and dangerous trick is to use condition = substitute(gtype %in%
return_conceptually_similar_gtypes(as.character(avgProfile$layers$gtype[lidx])))
to get the very same layers that have been used to compute the median layer
properties which are included in the avgProfile$layers.

computationByHeight

There are two ways of how to backtrack layers that were aligned to avgProfile$layers.
The first and safest approach is by index, which requires the resampled profileSet
as returned by dbaSP or averageSP. The second approach is by layer height,
which should yield the same results (beta phase: still bugs possible, check your-
self!) and allows to backtrack the layers even if the resampled profileSet is not
available anymore, but only the original unmodified set which was used to create
the average profile.

Value

This function returns a list of data.frames with the backtracked layers. Each (named) list item
corresponds to a specific layer height (cm).

Author(s)

fherla

Examples

See Vignette for examples.

chooseICavg 13

chooseICavg Get index of appropriate initial condition average profile

Description

To average a set of snow profiles, dbaSP requires a snow profile as initial condition (IC) to start the
algorithm. To prevent persistent weak layers (PWLs) and crusts from being averaged-out during the
call to dbaSP, it is advised to start the algorithm with a best-guess IC. This best guess IC contains
a large number of PWLs and crusts to ensure that the most prevalent ones actually make their way
into the final average profile. This function helps to choose meaningful IC profiles. See Details or
(better) the source code for how this function picks the profiles.

Usage

chooseICavg(
set,
n,
classifyPWLs,
classifyCRs,
nPWL = round((2 * n/3) + 0.001),
sm = summary(set)

)

Arguments

set a sarp.snowprofile::snowprofileSet

n number of profile indices to be picked (i.e., returned)

classifyPWLs an argument list for a function call to sarp.snowprofile::findPWL which returns
relevant PWLs for identifying initial conditions

classifyCRs an argument list for a function call to sarp.snowprofile::findPWL which returns
relevant CR(ust)s for identifying initial conditions

nPWL number of profile indices to be picked from profiles that have many PWLs in
many different vertical levels; an analogous nCR will be the difference n - nPWL.

sm a (precomputed) summary of the set

Details

This function first computes how many PWLs and how many crusts are in the profiles that have
a close to median total snow height HS. Each of these profile is then divided into several vertical
levels (by sarp.snowprofile::numberOfPWLsPerVerticalLevel). nPWL and nCR profiles are then
randomly picked from the profiles that have PWLs or CR in most vertical levels and additionally
have a rather large number of PWLs/CR overall. The larger n, the more profiles with decreasing
number of PWLs/CR in different levels are also returned. Note that this function is best applied to
large profile sets to obtain semi-random results. For small sets, the indices returned can actually be
deterministic since the pool of relevant profiles is too small.

14 clusterSP

Value

n number of indices that correspond to profiles in the set

Author(s)

fherla

See Also

sarp.snowprofile::findPWL, averageSP

Examples

plot(SPgroup, SortMethod = "unsorted", TopDown = TRUE,
xticklabels = "originalIndices", main = "entire profile set")

IC_ids_pwl <- chooseICavg(SPgroup, n = 4, nPWL = 4,
classifyPWLs = list(pwl_gtype = c("SH", "DH")),
classifyCRs = NULL)

plot(SPgroup[IC_ids_pwl], SortMethod = "unsorted", hardnessResidual = 0, TopDown = TRUE,
xticklabels = IC_ids_pwl, main = "sample of profiles with rather many and distributed PWLs")

clusterSP Cluster snow profiles

Description

This function is the main gateway to sarp.snowprofile::snowprofile clustering.

Usage

clusterSP(
SPx = NULL,
k = 2,
type = c("hclust", "pam", "fanny", "kdba", "fast")[1],
distmat = NULL,
config = clusterSPconfig(type),
centers = "none",
keepSPx = TRUE,
keepDistmat = TRUE

)

Arguments

SPx a sarp.snowprofile::snowprofileSet to be clustered

k number of desired cluster numbers

type clustering type including hclust (default), pam, fanny, kdba and fast

clusterSP 15

distmat a precomputed distance matrix of class dist. This results in much faster cluster-
ing for type %in% c('hclust', 'pam', 'fanny') as well as faster identifica-
tion of medoid profiles if centers %in% c('medoids', 'both')

config a list providing the necessary hyperparameters. Use clusterSPconfig functions
for convenience!

centers compute and return mediods, centroids, both, or none for each cluster. default
’none’ will only return centroids/medoids if they were already calculated with
the clustering algorithm, whereas other options could result in extra processing
time to calculate additional centroids/medoids

keepSPx append the snowprofileSet to the output?

keepDistmat append the distmat to the output?

Details

There are several clustering approaches that can be applied to snow profiles. Most rely on computing
a pairwise distance matrix between all profiles in a snowprofileSet. Current implementations with
this approach rely on existing R functions:

• agglomerative hierarchical clustering stats::hclust

• partitioning around medoids cluster::pam

• fuzzy analysis clustering cluster::fanny

Since computing a pairwise distance matrix matrix can be slow, the recommended way of test-
ing different number of clusters k is precomputing a single distance matrix with the distanceSP
function and providing it as an argument to clusterSP.

An alternate type of clustering known a k-dimensional barycentric averaging kdba is conceptually
similar to kmeans but specifically adapted to snow profiles clusterSPkdba. That means that an
initial clustering condition (which can be random or based on a ’sophisticated guess’) is iteratively
refined by assigning individual profiles to the most similar cluster and at the end of every iteration
recomputing the cluster centroids. The cluster centroids are represented by the average snow profile
of each cluster (see averageSP). Note that the results of kdba are sensitive to the initial conditions,
which by default are estimated with the ’fast’ method below.

And finally, a much faster ’fast’ method is available that computes a pairwise distance matrix with-
out aligning profiles, but instead based on summary statistics such as snow height, height of new
snow, presence or absence of weak layers and crusts, etc. The ’fast’ clustering approach uses the
partitioning around medoids clustering approach with the ’fast’ distance matrix.

More details here...

Value

a list of class clusterSP containing:

• clustering: vector of integers (from 1:k) indicating the cluster to which each point is allo-
cated

• id.med: vector of indices for the medoid profiles of each cluster (if calculated)

• centroids: snowprofileSet containing the centroid profile for each cluster (if calculated)

16 clusterSP

• tree: object of class ’hclust’ describing the tree output by hclust

• ...: all other outputs provided by the clustering algorithms (e.g., a membership matrix from
fanny.object, pam.object, iteration history from clusterSPkdba)

• type: type of clustering as provided by input argument

• call: a copy of the clusterSP function call

• SPx: a copy of the input snowprofileSet (if keepSPx = TRUE)

• distmat: the pairwise distance matrix of class dist (if keepDistmat = TRUE and a matrix has
been provided or computed)

Author(s)

fherla shorton

See Also

clusterSPconfig, clusterSPcenters, clusterSPkdba, plot.clusterSP

Examples

this_example_runs_too_long <- TRUE
if (!this_example_runs_too_long) { # exclude from cran checks

Cluster with SPgroup2, which contains deposition date and p_unstable
SPx <- SPgroup2
config <- clusterSPconfig(simType = 'wsum_scaled', ddate = T, pwls = T)

Hierarchical clustering with k = 2
cl_hclust <- clusterSP(SPx, k = 2, type = 'hclust', config = config)
plot(cl_hclust)

Precompute a distance matrix and cluster with PAM for k = 2 and 3
distmat <- do.call('distanceSP', c(list(SPx), config$args_distance))
cl_pam2 <- clusterSP(SPx, k = 2, type = 'pam', config = config, distmat = distmat)
cl_pam3 <- clusterSP(SPx, k = 3, type = 'pam', config = config, distmat = distmat)
print(cl_pam2$clustering)
print(cl_pam3$clustering)

kdba clustering
config_kdba <- clusterSPconfig(simType = 'layerwise', type = 'kdba')
cl_kdba <- clusterSP(SPx = SPgroup2, k = 2, type = 'kdba', config = config_kdba)
plot(cl_kdba)

}

clusterSPcenters 17

clusterSPcenters Compute centroids/medoids for clustered snow profiles

Description

Wrapper for calculating centroids averageSP or medoids medoidSP when clustering, with efficient
optimization when iterating kdba clustering calculations

Usage

clusterSPcenters(
SPx,
clustering,
config,
centers = "centroids",
clustering_old = NULL,
cents = NULL,
distmat = NULL

)

Arguments

SPx a sarp.snowprofile::snowprofileSet to be clustered

clustering vector of integers (from 1:k) indicating the cluster to which each snow profile is
allocated

config a list providing the necessary hyperparameters for distance and average calcula-
tions. Use clusterSPconfig functions for convenience!

centers type of center to determine, either centroids (default) where an average profile
is computed for each cluster or medoids where the index of the medoid profile
is identified

clustering_old same as clustering but from the previous iteration of a kdba (if provided then
this function only computes new centroids when the profiles within a cluster
changed)

cents a sarp.snowprofile::snowprofileSet of centroids from the previous iteration; pro-
vide NULL if not available

distmat a precomputed distance matrix of class dist (for faster medoid calculations)

Value

a named sarp.snowprofile::snowprofileSet of centroid/medoids profiles for each cluster where the
name refers to the corresponding cluster and is sorted in ascending manner.

Author(s)

fherla shorton

18 clusterSPconfig

See Also

clusterSPkdba, dbaSP

clusterSPconfig Configure clusterSP computation

Description

Configure the (hyper)parameters to computing snow profile clusters.

Usage

clusterSPconfig(
type = "n",
simType = NULL,
ddate = FALSE,
pwls = FALSE,
n_cores = NULL,
verbose = TRUE

)

Arguments

type which method of clustering, current options are kdba or default n which provides
generic config

simType which profile similarity method is used for alignments, see simSP for options
ddate if profiles contain deposition date adjust the dimensions and weights used for

layer similarities passed to distanceSPlayers
pwls if profiles contain stability indices then use that information to classify PWLS

in averageSP
n_cores number of nodes passed to averageSP and distanceSP to run calculations in par-

allel, default NULL performs all calculations in serial
verbose logical indicating whether to print various diagnostics

Value

a list containing the following:

• args_distance: a parameter list passed on to the distance function during clustering. This
list will determine the distance computation in clustering type 'kdba', and the computation
of a distance matrix with distanceSP for other clustering types

• args_centers: a parameter list passed on to clusterSPcenters during clustering
• args_cluster: a parameter list passed onto the clustering functions stats::hclust, cluster::pam,

cluster::fanny, clusterSPkdba
• args_fast: a named vectors with weights for summary stats used in in fast option
• verbose: copied from the input parameter verbose

clusterSPkdba 19

Author(s)

fherla shorton

See Also

clusterSP

Examples

print(clusterSPconfig(ddate = TRUE))

clusterSPkdba K-dimensional barycentric average clustering for snow profiles

Description

K-dimensional barycentric average clustering for snow profiles

Usage

clusterSPkdba(
SPx,
k,
config = clusterSPconfig(type = "kdba"),
centers = "centroids",
distmat = NULL,
keepSPx = TRUE

)

Arguments

SPx a sarp.snowprofile::snowprofileSet to be clustered

k number of desired cluster numbers

config a list providing the necessary hyperparameters. Use clusterSPconfig function
with type = kdba for convenience!

centers type of center to determine, either centroids (default) where an average profile
is computed for each cluster or medoids where the index of the medoid profile
is identified

distmat a precomputed distance matrix of class dist (only used if centers = medoids)

keepSPx append the snowprofileSet to the output?

20 concat_avgSP_timeseries

Value

a list of class clusterSP containing:

• clustering: vector of integers (from 1:k) indicating the cluster to which each point is allo-
cated

• centroids: snowprofileSet containing the centroid profile for each cluster (if calculated)

• clusters_history: matrix with history of clustering over iterations

• iccentroids: initial condition centroids

• niterations: number of iterations

• converged: did the algorithm converge?

• SPx: a copy of the input snowprofileSet (if keepSPx = TRUE)

Author(s)

fherla shorton

See Also

clusterSP, clusterSPcenters

Examples

this_example_runs_too_long <- TRUE
if (!this_example_runs_too_long) { # exclude from cran checks

cl_kdba <- clusterSPkdba(SPgroup2, k = 2)
plot(cl_kdba)

}

concat_avgSP_timeseries

Concatenate time series of average profiles

Description

This is useful in operations to update a time series that was computed in the past with a newly
computed average time series. The routine merges all entries with duplicated entries (read dates)
being taken from avgSP2.

Usage

concat_avgSP_timeseries(avgSP1, avgSP2)

Arguments

avgSP1 old time series of average profiles as returned by averageSPalongSeason

avgSP2 new time series of average profiles as returned by averageSPalongSeason

ddateDistance 21

Author(s)

fherla

See Also

averageSPalongSeason

ddateDistance Deposition Date Distance

Description

Calculate the distance (i.e. dissimilarity) between two deposition dates

Usage

ddateDistance(
ddate1,
ddate2,
normalizeBy = 5,
clipWindow = FALSE,
na.dist = 0.5

)

Arguments

ddate1 1D array of POSIX dates

ddate2 same format and length as ddate1

normalizeBy Numeric scalar to be used for normalization, i.e. the number of days, that defines
the distance value of 1

clipWindow Should differences larger than ’normalizeBy’ number of days be set to distance
’Infinity’? default FALSE.

na.dist replace NA values with that distance

Value

An array of length(ddate1) containing the distances according to the configurations.

Author(s)

fherla

22 densityDistance

Examples

create ddate arrays..
ddate <- as.POSIXct("2019/04/20 12:00", tz = "UTC")
ddate1 <- rep(ddate, 5)
ddate2 <- as.POSIXct(c("2019/04/12 08:00", "2019/04/16 10:00", "2019/04/20 12:00",

"2019/04/21 16:00", "2019/04/22 20:00"), tz = "UTC")

.. and calculate distance:
ddateDistance(ddate1, ddate2, normalizeBy = 5)

densityDistance Difference in layer density

Description

Calculate the difference (i.e. distance) in layer density

Usage

densityDistance(density1, density2, normalize = FALSE, absDist = TRUE)

Arguments

density1 numeric density values (1D array)

density2 numeric density values (1D array)

normalize Should result be normalized? boolean, default False.

absDist Interested in absolute distance? default True.

Value

numeric density distance

Author(s)

pbillecocq

distanceSP 23

distanceSP Compute pairwise distances between snow profiles

Description

Calculate the distance between all combinations of snowprofiles in a snowprofileSet by:

Usage

distanceSP(
SPx,
SP2 = NULL,
output = "dist",
n_cores = NULL,
symmetric = TRUE,
fast_summary = FALSE,
fast_summary_weights = clusterSPconfig()$args_fast,
progressbar = requireNamespace("progress", quietly = TRUE),
...

)

Arguments

SPx a sarp.snowprofile::snowprofileSet object (or a single snowprofile if SP2 is pro-
vided)

SP2 a sarp.snowprofile::snowprofile object if SPx is also a snowprofile and a single
pairwise distance is to be computed

output type of output to return, either a class dist (default) or matrix

n_cores number of nodes to create for a cluster using the parallel package to do distance
matrix calculation in parallel (default is serial calculations)

symmetric only compute one of two alignments dtwSP(A, B) or dtwSP(B, A) rather than
taking the min distance (when diminished accuracy is favourable to speed up
run times for large number of profiles)

fast_summary Option to compute distances from basic summary stats instead of layerwise
comparisons

fast_summary_weights

A named numeric vector with relative weights for each snowpack property.
Must be in exact order, but do not need to be normalized. Use clusterSPcon-
fig$args_fast for template. See details for summary stats that have been imple-
mented.

progressbar Do you want to print a progress bar with recommended package ’progress’?
(only works for n_core = NULL)

... arguments passed to dtwSP and further to simSP. simType from simSP is an
important choice.

24 distanceSP

Details

1. Matching their layers and aligning them (i.e., warp one profile onto the other one)

2. Assessing the similarity of the aligned profiles based on avalanche hazard relevant character-
istics

3. Convert the similarity score into a distance value between [0, 1]

This procedure is useful for clustering and aggregating tasks, given a set of multiple profiles.

When computing the distance matrix this routine calls simSP for every possible pair of profiles
among the group. During that call the profile pair is aligned by dtwSP and the aligned pair is
evaluated by simSP.

Note that the pairwise distance matrix is modified within the function call to represent a symmetric
distance matrix. That is, however, not originally the case, since dtwSP(A, B) != dtwSP(B, A).
The matrix is therefore made symmetric by setting the similarity between the profiles A and B to
min({dtwSP(A, B), dtwSP(B, A)}).

Note that the number of possible profile pairs grows exponentially with the number of profiles in
the group (i.e., O(n^2) calls, where n is the number of profiles in the group). Several option for
improved performance include:

• Using the n_core argument to activate thee parallel package. A suggestion value is the
number of cores on your system minus one n_cores = parallel::detectCores() - 1.

• Setting symmetric = FALSE will only calculate dtwSP(A, B) and therefore not make the ma-
trix symmetric, but cut the number of alignments in half

• Setting fast_summary = TRUE will compute similarities from basic summary stats instead of
aligning layers with dynamic time warping.

When using fast_summary = TRUE, you can provide custom weights to change the relative impor-
tance of the following snowpack properties:

• w_hs: total snow height

• w_hn24: height of snow in past 24 h

• w_hn72: height of snow in past 72 h

• w_slab: average hand hardness of snow in past 72 h

• w_gtype: total thickness of layers grouped into new snow (PP, DF), pwls (SH, FC, DH), bulk
(RG, FCxr) and melt (MF, MFcr, IF)

• w_gtype_rel: w_gtype scaled by HS

• w_new: total thickness of PP/DF layers

• w_pwl: do critical weak layers exist in the top/middle/bottom thirds of the profile

• w_crust: do melt-freeze crusts exist in the top/middle/bottom thirds of the profile

• w_rta: maximum rta in the top/middle/bottom thirds of the profile The number of stats com-
puted depends on the snowprofileLayer properties available in the data.

@examples

Simple serial calculation:
distmat1 <- distanceSP(SPgroup2[1:4])

distanceSPlayers 25

Parallel calculation (uncomment):
#distmat2 <- distanceSP(SPgroup2[1:4], n_cores = parallel::detectCores() - 1)

Fast summary method:
distmat3 <- distanceSP(SPgroup2, fast_summary = T)

View the default weights, then recalculate the distances with adjusted weights:
print(clusterSPconfig()$args_fast) weights <- c(w_hs = 3, w_hn24 = 0, w_h3d = 2, w_slab = 0,
w_gtype = 0, w_gtype_rel = 0, w_new = 0, w_pwl = 0, w_crust = 1, w_rta = 1) distmat4 <-
distanceSP(SPgroup2, fast_summary = T, fast_summary_weights = weights)

Value

Either a dist or matrix object with pairwise distances (depending on output argument)

Author(s)

shorton fherla

See Also

simSP, medoidSP, clusterSP

distanceSPlayers Calculate a multidimensional distance matrix between two profiles

Description

This routine calculates a distance matrix for two given profiles (query and ref). Analogously to
other DTW routines, the query is arranged along the matrix rows, the ref along the columns. Every
cell of the matrix represents the distance between the corresponding profile layers. The distance is
calculated based on the specified layer properties (e.g., hardness, gtype, ddate). The routine calls
subroutines to calculate the distance for each property and combines the normalized distances by
weighted averaging.

Usage

distanceSPlayers(
query,
ref,
dims = c("hardness", "gtype"),
weights = c(0.2, 0.8),
gtype_distMat = sim2dist(grainSimilarity_align(FALSE)),
prefLayerWeights = layerWeightingMat(FALSE),
ddateNorm = 5,
windowFunction = warpWindowSP,
top.down.mirroring = FALSE,
warn.if.na.in.distance.calc = FALSE,
...

)

26 distanceSPlayers

Arguments

query The query snowprofile object

ref The ref snowprofile object

dims Character vector containing the layer properties to calculate the distance over.
Currently implemented are the properties hardness, gtype, ddate, density,
ogs, p_unstable.

weights Numeric vector of the same length as dims specifying the averaging weights to
each element of dims.

gtype_distMat A symmetric distance scoring matrix provided as data.frame that stores infor-
mation about the distances between the encountered grain types of the provided
profiles. Default is the corresponding distance matrix of grainSimilarity_align,
cf. sim2dist.

prefLayerWeights

A matrix similar to gtype_distMat, but storing weights for preferential layer
matching, e.g. defaults to layerWeightingMat; the higher the values for a given
grain type pair, the more the algorithm will try to match those layers above
others. To turn weighting scheme off, set prefLayerWeights = NA

ddateNorm Normalize the deposition date distance by ddateNorm number of days. Numeric,
default 5.

windowFunction a window function analogous to warpWindowSP (Other compatible window
functions can be found in dtw::dtwWindowingFunctions.)

top.down.mirroring

Will the resulting distance matrix be used for top down alignments? i.e., do you
want to mirror the matrix about its anti-diagonal (top-left/bottom-right diago-
nal)?

warn.if.na.in.distance.calc

most dependent functions in this package should be able to deal with NA values
encountered in distance calculations. Set this argument to TRUE if you want to
be warned anyways.

... arguments to the window function, e.g. window.size, window.size.abs, ddate.window.size,
...

Value

A distance matrix of dimension (n x m), where n, m are the number of layers in the query and ref,
respectively.

Note

For package developers: dot inputs to the function (i.e., ...) also necessary to keep dtwSP highly
flexible and customizable. Dot inputs may contain arguments that remain unused in this function.

Author(s)

fherla

dtwSP 27

See Also

resampleSPpairs

Examples

call function with two snow profiles of unequal lengths, without using a window function:
dMat_noWindow <- distanceSPlayers(SPpairs$A_modeled, SPpairs$A_manual, windowFunction = NA)
graphics::image(dMat_noWindow, main = "Default distance matrix without a warping window")

compute distance based on grain type alone,
and additionally disable preferential layer matching:
dMat <- distanceSPlayers(SPpairs$A_modeled, SPpairs$A_manual, windowFunction = NA,

dims = "gtype", weights = 1, prefLayerWeights = NA)
graphics::image(dMat,

main = "Only based on grain type, and without preferential layer matching")

enable preferential layer matching:
dMat <- distanceSPlayers(SPpairs$A_modeled, SPpairs$A_manual, windowFunction = NA)
graphics::image(dMat,

main = "... with preferential layer matching")

using a warping window:
dMat <- distanceSPlayers(SPpairs$A_modeled, SPpairs$A_manual, window.size.abs = 50)
graphics::image(dMat, main = "... and superimposing an absolute warping window of 50 cm")

dtwSP Calculate DTW alignment of two snow profiles

Description

This is the core function of the package and allows to match layers between pairs of snow profiles
to align them. It provides a variety of options, where the default values represent a good starting
point to the alignment of most generic profiles.

Usage

dtwSP(
query,
ref,
open.end = TRUE,
checkGlobalAlignment = "auto",
keep.internals = TRUE,
step.pattern = symmetricP1,
resamplingRate = 0.5,
rescale2refHS = FALSE,

28 dtwSP

bottom.up = TRUE,
top.down = TRUE,
simType = "HerlaEtAl2021",
...

)

Arguments

query The query snow profile to be warped
ref The reference snow profile to be warped against
open.end Is an open end alignment desired? Recommended if profiles will not be rescaled.
checkGlobalAlignment

Do you want to check whether a global alignment performs better (i.e., open.end
= FALSE), and use the optimal one of the computed alignments? 'auto' sets to
TRUE if simType == "HerlaEtAl2021" and to FALSE otherwise.

keep.internals Append resampled and aligned snow profiles as well as internal parameters to
the output object?

step.pattern The local slope constraint of the warping path, defaults to Sakoe-Chiba’s sym-
metric pattern described by a slope factor of P = 1, see dtw::stepPattern

resamplingRate Scalar, numeric resampling rate for a regular depth grid. If the profiles have been
rescaled prior to calling this routine, set to NA. To resample onto the smallest
possible mutual (original, likely irregular) depth grid (see Details, bullet point
2.2), set to 'irregularInterfaces'.

rescale2refHS Rescale the query snow height to match the ref snow height?
bottom.up Compute an open.end alignment from the ground upwards?
top.down Compute an open.end alignment from the snow surface downwards?
simType the similarity between two profiles can be computed with different approaches,

see simSP
... Arguments passed to distanceSPlayers, and dtw::dtw, and simSP e.g.

• dims, weights (defaults specified in distanceSPlayers)
• ddateNorm, numeric, normalize deposition date (default specified in distanceSPlayers)
• windowFunction, default warpWindowSP
• window.size, window.size.abs, ddate.window.size (defaults specified

in warpWindowSP)
• gtype_distMat, specific to profile alignment, see distanceSPlayers
• gtype_distMat_simSP, specific to similarity measure in simSP
• prefLayerWeights, weighting matrix for preferential layer matching, e.g.

layerWeightingMat
• nonMatchedSim Similarity value [0, 1] for non-matched layers, see simSP.

indifference = 0.5, penalty < 0.5
• nonMatchedThickness How strongly should the thicknesses of non-matched

layers influence the resulting similarity of the profiles? The smaller this
(positive!) value, the more influence; and vice versa. See simSP for more
details.

• apply_scalingFactor Setting for simSP in case simType is "layerwise"
or "wsum_scaled".

dtwSP 29

Details

The individual steps of aligning snow profiles (which can all be managed from this function):

1. (optional) Rescale the profiles to the same height (cf., scaleSnowHeight)
2. Resample the profiles onto the same depth grid. 2 different approaches:

• regular grid with a sampling rate that is provided by the user (recommended, cf., resam-
pleSP).

• irregular grid that includes all layer interfaces within the two profiles (i.e., set resamplingRate
= 'irregularInterfaces') (cf., resampleSPpairs)

3. Compute a weighted local cost matrix from multiple layer characteristics (cf., distanceSPlay-
ers)

4. Match the layers of the profiles with a call to dtw::dtw (eponymous R package)
5. Align the profiles by warping the query profile onto the reference profile (cf., warpSP)
6. (optional) If the function has been called with multiple different boundary conditions (global,

top-down, or bottom-up alignments), the optimal alignment as determined by simSP or by the
DTW distance will be returned.

7. (optional) Compute a similarity score for the two profiles with simSP

Value

An alignment object of class ’dtwSP’ is returned. This is essentially a list with various information
about the alignment. If keep.internals = TRUE, the resampled snow profiles ’query’, ’reference’
and ’queryWarped’, as well as the ’costMatrix’ and ’directionMatrix’ are elements of the returned
object.

Note

Furthermore, the alignment based on grain type information is currently only possible for specific
grain types. These grain types require a pre-defined distance or similarity, such as given by grain-
Similarity_align. If your profile contains other grain types, you are required to define your custom
grainSimilarity matrix.

The package used to require re-scaling of the profiles to identical snow heights. This requirement
has been removed in v1.1.0. Profiles therefore can be resampled onto a regular grid, whilst keeping
their original total snow heights. The alignment can then be carried out bottom.up or top.down with
a relative or absolute window size. If the profiles have different snow heights and a relative window
size is provided, the window size is computed using the larger snow height of the two profiles (e.g.,
Profile A HS 100 cm, Profile B HS 80 cm; window.size = 0.3 translates to an effective window size
of +/- 33 cm). See examples for alignments without prior re-scaling.

Author(s)

fherla

References

Herla, F., Horton, S., Mair, P., & Haegeli, P. (2021). Snow profile alignment and similarity assess-
ment for aggregating, clustering, and evaluating of snowpack model output for avalanche forecast-
ing. Geoscientific Model Development, 14(1), 239–258. https://doi.org/10.5194/gmd-14-239-2021

30 extractFromScoringMatrix

See Also

plotSPalignment, simSP

Examples

Align a modeled and a manual snow profile, primarily based on default settings:
dtwAlignment <- dtwSP(SPpairs$A_modeled, SPpairs$A_manual, open.end = FALSE)

check out the resulting dtwSP alignment object:
summary(dtwAlignment)
plotSPalignment(dtwAlignment = dtwAlignment)
plotCostDensitySP(dtwAlignment)

Align profiles from subsequent days without re-scaling them:
dtwAlignment <- dtwSP(SPpairs$C_day3, SPpairs$C_day1, resamplingRate = 0.5, rescale2refHS = FALSE,

window.size.abs = 30)
Note, per default both bottom.up and top.down alignments have been considered,
let's check out which one was suited better:
dtwAlignment$direction # i.e., bottom up
Check it out visually:
plotSPalignment(dtwAlignment = dtwAlignment,

mainQu = "3 Days after...", mainRef = "...the reference profile.")
plotCostDensitySP(dtwAlignment, labelHeight = TRUE)

extractFromScoringMatrix

Extract from Scoring matrix

Description

Vectorized function to efficiently extract elements from scoring matrix of type data.frame

Usage

extractFromScoringMatrix(ScoringFrame, grainType1, grainType2)

Arguments

ScoringFrame Scoring matrix of type data.frame (needs to be of symmetric, matrix like format)

grainType1 factor vector of grain types contained in ScoringFrame

grainType2 same as grainType1

Value

numeric vector of length grainType1 with the elements of ScoringFrame that are defined by
grainType1 and grainType2

flipLayers 31

Author(s)

fherla

flipLayers Flip snow profile layers top down

Description

Flip snow profile layers top down

Usage

flipLayers(x)

Arguments

x snowprofile or snowprofileLayers object with layers to be flipped

Value

same object with layers dataframe flipped upside down

Note

only do that with a specific reason (better, don"t do it!), as all functions with snowprofile objects
are designed to have the layers increase in height.

grainSimilarity_align Grain Type similarity matrix for DTW alignments

Description

Get the relative similarity matrix of grain types as used for snow profile alignments. This similarity
matrix considers the formation and metamorphosis of grain types, as well as quirks of the SNOW-
PACK model.
grainSimilarity_evaluate is an analogous matrix designed for assessing the similarity between two
profiles, which requires considering the resulting avalanche hazard implications of grain types.
The domain is [0, 1] — 1 representing identical grain types. The column ’NA’ can be used for
unknown grain types.

Usage

grainSimilarity_align(triag = TRUE)

32 grainSimilarity_evaluate

Arguments

triag Return a triangular matrix (TRUE, default) or a symmetric matrix (FALSE)

Value

data.frame, either triangular or symmetric

Author(s)

fherla

See Also

grainSimilarity_evaluate, layerWeightingMat

Examples

"similarity" matrix:
simMat <- grainSimilarity_align()
print(simMat)

equivalent "distance" matrix:
distMat <- sim2dist(grainSimilarity_align())
print(distMat)

grainSimilarity_evaluate

Grain type similarity matrix for evaluation purposes

Description

Similar to grainSimilarity_align, but designed for assessing the similarity between snow profiles
based on avalanche hazard relevant characteristics. To be used in combination with simSP.

Usage

grainSimilarity_evaluate(triag = TRUE)

Arguments

triag Return a triangular matrix (TRUE, default) or a symmetric matrix (FALSE)

Value

data.frame, either triangular or symmetric

hardnessDistance 33

Author(s)

fherla

Examples

simMat <- grainSimilarity_evaluate()
print(simMat)

hardnessDistance Difference in Hand Hardness

Description

Calculate the difference (i.e. distance) in hand hardness

Usage

hardnessDistance(hardness1, hardness2, normalize = FALSE, absDist = TRUE)

Arguments

hardness1 character or numeric hand hardness value (1D array)

hardness2 character or numeric hand hardness value (1D array)

normalize Should result be normalized? boolean, default False.

absDist Interested in absolute distance? default True.

Value

numeric Hand Hardness Distance

Author(s)

fherla

34 interactiveAlignment

interactiveAlignment Run interactive alignment app

Description

This app allows to interactively explore the alignment of two snowprofiles, which are either given
as input to this function, or are uploaded to the app interactively as caaml files. Example profiles
are also provided in the app.

Usage

interactiveAlignment(query = NaN, ref = NaN)

Arguments

query an optional query snowprofile

ref an optional reference snowprofile

Value

An interactive session will be started

Author(s)

fherla

Examples

if (FALSE){ # this example won't be started in package tests.

start app and choose profiles from within the app:
interactiveAlignment()

start app with package internal profile data (from `sarp.snowprofile`):
interactiveAlignment(query = SPpairs$A_modeled, ref = SPpairs$A_manual)

}

layerWeightingMat 35

layerWeightingMat Weighting scheme for preferential layer matching

Description

A matrix, of the same form as grainSimilarity_align, but containing weighting coefficients for pref-
erential layer matching based on the grain types of the layers.

Usage

layerWeightingMat(triag = TRUE)

Arguments

triag Return a triangular matrix (TRUE, default) or a symmetric matrix (FALSE)

Value

data.frame, either triangular or symmetric

Author(s)

fherla

Examples

weightsMat <- layerWeightingMat()
print(weightsMat)

match_with_tolerance Match with numeric tolerance

Description

Match with numeric tolerance

Usage

match_with_tolerance(x, y, d = 2)

Arguments

x numeric vector

y numeric vector

d numeric tolerance in form of digits

36 medoidSP

Value

boolean vector equivalently to match

medoidSP Find the medoid snow profile among a group of profiles

Description

Find the medoid snowprofile among a group of profiles, based on their pairwise dissimilarity. Either
provide a list of snowprofile objects, or a precomputed distance matrix.

Usage

medoidSP(SPx, distmat = NULL, clustering = NULL, keepDistmat = FALSE, ...)

Arguments

SPx a sarp.snowprofile::snowprofileSet object

distmat If you have a precalculated distance matrix, provide it here to compute the
medoid on it.

clustering index of clusters, if provided instead of identifying the medoid profile of the
entire snowprofileSet it will return a vector of medoids for each cluster

keepDistmat Do you want to return the pairwise distance matrix?

... arguments passed to distanceSP and then further to dtwSP and simSP

Details

If providing a large number of profiles without a precomputed distance matrix consider providing a
ncores argument so distanceSP will calculate alignments in parallel.

Value

If keepDistmat = FALSE return the (named) index of the medoid snow profile, otherwise return a
list with the elements id.med and distmat.

Author(s)

fherla shorton

mergeIdentLayers 37

Examples

this_example_runs_about_5s <- TRUE
if (!this_example_runs_about_5s) { # exclude from cran checks

take a list of profiles
grouplist <- SPgroup2[1:4]
plot(grouplist, SortMethod = 'unsorted', xticklabels = "originalIndices")

calulate medoid profile
id.med <- medoidSP(grouplist)
representativeProfile <- grouplist[[id.med]]
plot(representativeProfile, main = paste0("medoid (i.e., profile ", id.med, ")"))

}

mergeIdentLayers Merge layers with identical properties

Description

Merge adjacent layers that have identical properties, such as grain type, hardness etc..

Usage

mergeIdentLayers(x, properties = c("hardness", "gtype"))

Arguments

x a snowprofile or snowprofileLayers object with height grid information

properties a character array of layer properties that are considered when searching for iden-
tical layers (e.g., hardness, gtype, ...)

Value

A new snowprofileLayers object will be returned with the dimensions height, hardness, gtype
and any other properties given in ’properties’. Depth and thickness information will be auto-
calculated. For snowprofile objects, the field ’changes’ will be initialized or extended.

Author(s)

fherla

38 ogsDistance

Examples

Merge identical layers based on hardness and grain type:
fewerLayers <- mergeIdentLayers(x = SPpairs$A_modeled, properties = c("hardness", "gtype"))
summary(SPpairs$A_modeled)[, c("hs", "nLayers")]
summary(fewerLayers)[, c("hs", "nLayers")]

compare profile plots before and after merging (i.e., appear identical!)
opar <- par(no.readonly =TRUE)
par(mfrow = c(1, 2))
plot(SPpairs$A_modeled, main = "original", ylab = "Snow height")
plot(fewerLayers, main = "merged layers", ylab = "Snow height")
par(opar)

ogsDistance Difference in layer ogs

Description

Calculate the difference (i.e. distance) in layer ogs

Usage

ogsDistance(ogs1, ogs2, normalize = FALSE, absDist = TRUE)

Arguments

ogs1 numeric ogs values (1D array)

ogs2 numeric ogs values (1D array)

normalize Should result be normalized? boolean, default False.

absDist Interested in absolute distance? default True.

Value

numeric ogs distance

Author(s)

pbillecocq

plot.clusterSP 39

plot.clusterSP Plot clustered snow profiles

Description

Plot the snowprofileSet sorted and divided by clusters with vertical lines. If available also plot the
centroid or medoid profiles beneath the snowprofileSets.

Usage

S3 method for class 'clusterSP'
plot(
x,
SPx = NULL,
centers = c("centroids", "medoids", "n")[1],
include = c(NA, "rta_dist", "pu_dist")[1],
hardnessResidualSPx = 1,
SortMethod = c("hs", "unsorted"),
...

)

Arguments

x a clusterSP object output by clusterSP

SPx a sarp.snowprofile::snowprofileSet to be clustered

centers plot either centroids, medoids or none profiles underneath each set of clus-
tered profiles

include plot rta or p_unstable distributions next to centroids
hardnessResidualSPx

Value within (0, 1) to control the minimum horizontal space of each layer that
will be e colored irrespective of the layer’s hardness. A value of 1 corresponds
to no hardness being shown

SortMethod sort profiles within each cluster by either snow depth hs (default) or unsorted

... Additional parameters passed to sarp.snowprofile::plot.snowprofileSet

Author(s)

fherla shorton

See Also

clusterSP

40 plotCostDensitySP

plotCostDensitySP Plot alignment cost density and warping path

Description

Plot alignment cost density and warping path, optionally with the two snow profiles plotted in the
margins along the axes.

Usage

plotCostDensitySP(
alignment,
localCost = TRUE,
labelHeight = FALSE,
marginalPros = TRUE,
pathCol = "black",
target = FALSE,
movingTarget = FALSE,
tlty = "dotted",
tlwd = 1.5,
tcol = "black",
tcex = 1.5,
cex.lab = 1,
xlab = NULL,
ylab = NULL,
...

)

Arguments

alignment object from dtwSP

localCost plot local cost matrix, otherwise plot accumulated global cost.

labelHeight plot axes in units of height (cm) or in unitless (i.e., layer index).

marginalPros plot profiles in margins along the axes. default TRUE

pathCol color of warping path

target draw horizontal & vertical lines from matrix cells to corresponding layers in the
(marginal) profiles. Provide either a vector of length 1 (i.e., index of warping
path) or length 2 (i.e., x, y coordinates in terms of layer indices), or a matrix
with 2 columns, specifying (x, y) if you desire multiple ’targets’

movingTarget Do you want to draw the warping path only partially, from the origin to the
target cross? Only possible if target cross is given as a scalar! default = FALSE
(Useful to create GIF animations of a moving path)

tlty target lty

tlwd target lwd

plotCostDensitySP 41

tcol target col

tcex target cex

cex.lab cex of axis labels (cf. par)

xlab x-axis label to change default labeling

ylab y-axis label to change default labeling

... forwarded to par

Note

If you can’t see the axis labels, try e.g., par(oma = c(3, 3, 0, 0)) before calling the function. Note,
there seems to be a problem (only sometimes) with the left-hand labels that are for some reason not
plotted parallel to the axis. Also, the routine is not bulletproof with respect to drawing ’targets’.
Apologies for any inconveniences!

Author(s)

fherla

Examples

first align profiles:
dtwAlignment <- dtwSP(SPpairs$A_modeled, SPpairs$A_manual, open.end = FALSE)

then plot cost density:
plotCostDensitySP(dtwAlignment)

label height instead of layer index, and don't show warping path:
plotCostDensitySP(dtwAlignment, labelHeight = TRUE, pathCol = "transparent")

draw lines to the cell that corresponds to the DH and SH layers
plotCostDensitySP(dtwAlignment, target = c(191, 208))

"moving target", i.e., draw warping path only from origin to target:
plotCostDensitySP(dtwAlignment, target = 200, movingTarget = TRUE)
plotCostDensitySP(dtwAlignment, target = 266, movingTarget = TRUE)

A cool GIF can be created from frames like those
create_GIF <- FALSE
if (create_GIF){

nPath <- length(dtwAlignment$index1)
resolution <- 100 # i.e. super low, make value smaller for smoother GIF
for (k in seq(1, nPath, by = resolution)) {
plotCostDensitySP(dtwAlignment, target = k, movingTarget = TRUE)

}
}

42 plotSPalignment

plotSPalignment Align and plot two snow profiles using DTW

Description

This is a plotting routine for the DTW alignment of two snow profiles. Either provide two snow
profiles or a dtwSP alignment object. Don’t resize the figure, otherwise the plotted alignment seg-
ments will not be in correct place anymore! If you need a specific figure size, use grDevices::png
with a width/height aspect ratio of about 5/3.

Usage

plotSPalignment(
query,
ref,
dtwAlignment = NULL,
keep.alignment = FALSE,
plot.costDensity = FALSE,
plot.warpedQuery = TRUE,
label.ddate = FALSE,
segCol = "gray70",
segLty = "dotted",
segLwd = 1,
segTidy = FALSE,
segInd = TRUE,
segEmph = NA,
cex = 1,
mainQu = "query",
mainRef = "reference",
mainQwarped = "warped query",
emphasizeLayers_qu = FALSE,
emphasizeLayers_ref = FALSE,
failureLayers_qu = FALSE,
failureLayers_qu_col = "red",
...

)

Arguments

query The query snowprofile to be warped

ref The reference snowprofile to be warped against

dtwAlignment dtwSP object (optional)

keep.alignment Return dtwSP object with resampled query, ref and warped query? boolean
plot.costDensity

First graph, plotCostDensitySP with warping path? boolean, default = FALSE

plotSPalignment 43

plot.warpedQuery

plot warped query additionally to query, ref and alignment segments? (i.e. three
pane plot) boolean, default = TRUE

label.ddate Label deposition date in profiles? (Only possible if ddate is given in ’dims’, cf
distanceSPlayers)

segCol Color of alignment segments. Passed to gpar, default = "gray70"

segLty Linestyle of alignment segments. Passed to gpar, default = "dotted"

segLwd Linewidth of alignment segments, default = 1

segTidy Tidy up alignment segments, if profiles have not been resampled? boolean,
default FALSE i.e. one segment line per (synthetic) layer interface -> supports
visual understanding of alignment, but is also often confusing (segTidy currently
only implemented for tidying up to gtype and hardness interfaces)

segInd Index vector of query layers that will get alignment segments drawn. Note, that
the profiles might get resampled, so pre-calculate your correct indices!

segEmph Index vector of query layers, the alignment segments of which will be em-
phasized (thick and red). Note, that the profiles might get resampled, so pre-
calculate your correct indices!

cex font size, cf. par

mainQu subtitle for query subfigure

mainRef subtitle for reference subfigure

mainQwarped subtitle for warped query subfigure

emphasizeLayers_qu

emphasize Layers in query, see sarp.snowprofile::plot.snowprofile

emphasizeLayers_ref

emphasize Layers in reference, see sarp.snowprofile::plot.snowprofile

failureLayers_qu

draw arrow to failure layers (see sarp.snowprofile::plot.snowprofile)? provide
height vector.

failureLayers_qu_col

color of arrow(s) (individual color string or vector, see sarp.snowprofile::plot.snowprofile)

... Arguments passed to distanceSPlayers and dtwSP

Value

dtw object with the resampled ’$query’ and ’$reference’, as well as the warped query ’$query-
Warped’ (only if keep.alignment is TRUE)

Author(s)

fherla

44 puDistance

Examples

plotSPalignment(SPpairs$B_modeled1, SPpairs$B_modeled2)

plotSPalignment(SPpairs$B_modeled1, SPpairs$B_modeled2, dims = c("gtype"), weights = c(1))

alternatively keep alignment:
alignment <- plotSPalignment(SPpairs$B_modeled1, SPpairs$B_modeled2, keep.alignment = TRUE)
print(paste("Similarity between profiles:", alignment$sim))

alternatively, with precomputed alignment and emphasized layer matches:
dtwAlignment <- dtwSP(SPpairs$A_modeled, SPpairs$A_manual, open.end = FALSE)
plotSPalignment(dtwAlignment = dtwAlignment, segEmph = c(190, 192))

directly after plotting, add text to figure:
grid::grid.text("Profiles SPpairs$A (modeled/manual)", x = 0.5, y = 0.8,

gp = grid::gpar(fontsize=12, col="grey"))

puDistance Difference in layer stability p_unstable

Description

Calculate the difference (i.e. distance) in p_unstable

Usage

puDistance(pu1, pu2)

Arguments

pu1 numeric p_unstable values (1D array) (within [0, 1])

pu2 numeric p_unstable values (1D array) (within [0, 1])

Value

numeric p_unstable distance

Author(s)

fherla

resampleSP 45

resampleSP Resample snowprofile

Description

Resample an individual snow profile onto a new depth-grid (i.e., height-grid).

Usage

resampleSP(x, h = 0.5, n = NULL)

Arguments

x snowprofile (or snowprofileLayers) object

h Sampling rate (i.e. constant depth increment) in centimeters, if given as scalar
(default is 0.5 cm). Layers smaller than the scalar h will not be resolved in the
resampled profile. Can also be a vector specifying the desired height grid of the
resampled profile (useful for non-constant increments). But, be WARNED, that
a meaningless grid will produce colorful but senseless output!

n Number of layers in resampled profile (optional). A given n will overrule a
conflicting h!

Details

This routine alters how the layer information of snow profiles is stored without changing how the
profiles appear. Note, however, that only layer properties that are constant within the individual
layers will be resampled: i.e., height, hardness, gtype, ddate will be resampled. However,
temperature, for example, will not be resampled, because it is not constant within layers.

Value

resampled snowprofile with the same metadata as x, but resampled "layers". Note that only the
following layer properties will be resampled: height, hardness, gtype, ddate. If input was a
snowprofileLayers object, the output will be, too.

Author(s)

fherla

See Also

resampleSPpairs, mergeIdentLayers

46 resampleSPpairs

Examples

(1) constant sampling rate of 1 cm:
profileResampled <- resampleSP(SPpairs$A_modeled, h = 1.0)

compare profile summary before and after resampling:
summary(SPpairs$A_modeled)[, c("hs", "nLayers")]
summary(profileResampled)[, c("hs", "nLayers", "changes")]
head(profileResampled$layers)

compare profile plots before and after resampling (i.e., appear identical!)
opar <- par(no.readonly=TRUE)
par(mfrow = c(1, 2))
plot(SPpairs$A_modeled, main = "original", ylab = "Snow height")
plot(profileResampled, main = "resampled", ylab = "Snow height")
par(opar)

(2) resample to 150 layers:
profileResampled <- resampleSP(SPpairs$A_manual, n = 150)
summary(profileResampled)[, c("hs", "nLayers", "changes")]
head(profileResampled$layers)

(3) resample onto arbitrarily specified grid
(issues a warning when the new-grid HS deviates too much from the original HS)
irregularGrid <- c(2 + cumsum(c(0, c(10, 15, 5, 1, 3, 30, 50))), 120)
profileResampled <- resampleSP(SPpairs$A_manual, h = irregularGrid)

resampleSPpairs Resample a pair of profiles

Description

Resample a pair of (irregularly layered) profiles onto the smallest common height grid. To reduce
data storage this routine can be used to merge layers based on specified layer properties, if the
input profiles have been resampled earlier, or if due to other reasons existing layers in the individual
profiles can be merged. In summary, this routine alters how the layer information of snow profiles
is stored without changing how the profiles appear.

Usage

resampleSPpairs(
query,
ref,
mergeBeforeResampling = FALSE,
dims = c("gtype", "hardness")

)

resampleSPpairs 47

Arguments

query query snowprofile or snowprofileLayers object
ref reference snowprofile or snowprofileLayers object
mergeBeforeResampling

shall adjacent layers with identical layer properties be merged? (boolean)
dims layer properties to consider for a potential merging

Details

The smallest common height grid is found by

1. extract all unique layer interfaces in both profiles
2. resample each profile with the above height grid,

(!) but set all height values that exceed each max snow height to that max snow height!

Value

a list with the resampled input objects under the entries query and ref.

Author(s)

fherla

See Also

resampleSP, mergeIdentLayers

Examples

initial situation before mutual resampling:
two profiles with different snow heights and different numbers of layers
summary(SPpairs$A_manual)[, c("hs", "nLayers")]
summary(SPpairs$A_modeled)[, c("hs", "nLayers")]
opar <- par(no.readonly=TRUE)
par(mfrow = c(1, 2))
plot(SPpairs$A_manual, main = "Initial profiles before resampling",

ylab = "Snow height", ymax = 272)
plot(SPpairs$A_modeled, ylab = "Snow height", ymax = 272)

resampling:
resampledSPlist <- resampleSPpairs(SPpairs$A_manual, SPpairs$A_modeled,

mergeBeforeResampling = TRUE)

two profiles with different snow heights and IDENTICAL numbers of layers
summary(resampledSPlist$query)[, c("hs", "nLayers")]
summary(resampledSPlist$ref)[, c("hs", "nLayers")]
plot(resampledSPlist$query, main = "Profiles after resampling",

ylab = "Snow height", ymax = 272)
plot(resampledSPlist$ref, ylab = "Snow height", ymax = 272)
par(opar)

48 reScaleSampleSPx

reScaleSampleSPx Rescale and resample a snow profile list

Description

Rescale and resample all snow profiles provided in a list to an identical snow height and resampling
rate.

Usage

reScaleSampleSPx(SPx, resamplingRate = 0.5, scHeight = median, ...)

Arguments

SPx list of snowprofile objects

resamplingRate resampling rate, units in centimeters

scHeight a function that calculates the resulting height from the profiles, default median

... arguments passed on to the function provided in scHeight

Value

A list with the first entry $set storing the rescaled and resampled profile list, the second entry
$maxHS stores the maximum snow height found among the profiles

Author(s)

fherla

Examples

let's take the 'SPgroup' object as profile list
SPrr <- reScaleSampleSPx(SPgroup)
print(paste0("max height before rescaling: ", SPrr$maxHS, " cm"))
print(paste0("rescaled height: ", SPrr$set[[1]]$hs, " cm"))
plot(SPrr$set, SortMethod = 'unsorted')

return_conceptually_similar_gtypes 49

return_conceptually_similar_gtypes

Return conceptually similar grain types

Description

Note, use this function with care. It’s a brief helper function for specific usage, not generally
applicable! It is, however, sometimes useful for backtracking layers, see backtrackLayers.

Usage

return_conceptually_similar_gtypes(gt)

Arguments

gt a single gtype

Value

a character vector of similar gtypes

Examples

return_conceptually_similar_gtypes("SH")
return_conceptually_similar_gtypes("MFcr")
return_conceptually_similar_gtypes("RG")

rmZeroThicknessLayers Remove layers with a thickness of ’zero cm’

Description

Find layers in a snow profile that are zero cm thick (i.e. height vector stays constant for some
layers, even though grain types or hardness may change). Then, either remove those layers, or reset
them with the layer characteristics of the lower adjacent (non-zero-thickness) layer. In the latter
case (i.e., reset), the number of layers won’t change, but those non-zero thickness layers will be
made ineffective. This procedure is particularly necessary for warping snow profiles (cf., dtwSP,
warpSP).

Usage

rmZeroThicknessLayers(x, rm.zero.thickness = TRUE)

50 scaleSnowHeight

Arguments

x A snowprofile or snowprofileLayers object
rm.zero.thickness

Want to remove zero-thickness layers from profile? boolean, default TRUE. If
FALSE, those zero-thickness layers will be reset to the lower adjacent (non-
zero-thickness) layer; thus, the number of layers won’t be changed.

Value

A modified copy of the input object. For snowprofile objects, the field $changes will be initialized
or extended.

Author(s)

fherla

scaleSnowHeight Scale total height of a snow profile

Description

Scale the snow height of a snow profile either (1) based on another profile, or (2) based on a provided
(predetermined) snow height. This function can therefore be used to scale two snow profiles to an
identical snow height by scaling the height vector of the (query) profile against the height vector of
the (reference) profile.

Usage

scaleSnowHeight(query, ref = NA, height = NA)

Arguments

query the query snow profile (whose height vector will be scaled)

ref the reference snow profile (whose total snow height will be used as the reference
height for the scaling)

height an optional reference height that can be given instead of the query profile

Value

query profile with scaled height vector

Author(s)

fherla

sim2dist 51

sim2dist Convert ’similarity’ matrix to ’distance’ matrix

Description

Convert a ’similarity’ matrix to ’distance’ matrix. Note that the similarity must be normalized (i.e.
within [0, 1])

Usage

sim2dist(SimMat)

Arguments

SimMat similarity matrix of type data.frame with ranges [0, 1]

Value

copy of input data.frame with similarities inverted to distances (i.e. dist = 1 - sim)

Author(s)

fherla

Examples

the 'swissSimilarityMatrix' as similarity and as distance
graphics::image(as.matrix(swissSimilarityMatrix))
graphics::image(as.matrix(sim2dist(swissSimilarityMatrix)))

simSP Similarity measure between snow profile pairs

Description

This function calculates a similarity measure for two snow profiles that have been aligned onto the
same height grid (either through DTW or resampling). If one profile contains more layers than
the other one, the layers with a non-matched height represent missing layers and will be treated
accordingly. The similarity measure is compatible with top-down alignments and is symmetric
with respect to its inputs, i.e. simSP(P1, P2) == simSP(P2, P1). Several different approaches of
computing the measure have been implemented by now, see Details below.

52 simSP

Usage

simSP(
ref,
qw,
gtype_distMat_simSP = sim2dist(grainSimilarity_evaluate(triag = FALSE)),
simType = "HerlaEtAl2021",
nonMatchedSim = 0,
nonMatchedThickness = 10,
verbose = FALSE,
returnDF = FALSE,
apply_scalingFactor = FALSE,
simWeights = c(gtype = 1/3, hardness = 1/3, stability = 1/3),
...

)

Arguments

ref snowprofile object 1

qw snowprofile object 2 (matched layers need to be on the same height grid of ref)
gtype_distMat_simSP

a distance matrix that stores distance information of grain types (Be careful
to convert similarities, as in grainSimilarity_evaluate, into dissimilarities with
sim2dist.)

simType the similarity measure can be computed in several different ways (of sophistica-
tion). See Details section. Possible choices

• simple

• HerlaEtAl2021 (= simple2)
• tsa_WLdetection & rta_WLdetection

• layerwise & rta_scaling

• remotesensing

• wsum_scaled

nonMatchedSim sets the similarity value of non-matched layers [0, 1]. "indifference" = 0.5,
penalty < 0.5. Note that dtwSP sets the same value and overrides the default
value in this function!

nonMatchedThickness

If NA, every unique non-matched layer (i.e., contiguous resampled layers with
identical properties) contributes to the overall similarity by 1 x nonMatchedSim.
In that case, 5cm of non-matched new snow has the same effect on the over-
all similarity as 50cm of non-matched new snow. To make the effect of non-
matched layers dependent on the layer thickness, provide a positive number
to nonMatchedThickness. For nonMatchedThickness = 10, every 10cm of a
unique non-matched layer contribute to the overall similarity by 1 x nonMatchedSim.
So, 50cm of non-matched new snow would contribute 5 times stronger than 5cm
of non-matched new snow. Note that dtwSP sets the same value and overrides
the default value in this function!

verbose print similarities of different grain classes to console? default FALSE

simSP 53

returnDF additionally return the similarities of the grain classes as data.frame (analo-
gously to verbose); the return object then has the fields $sim and $simDF

apply_scalingFactor

Only applicable to types layerwise and wsum_scaled: TRUE or FALSE, see
Details.

simWeights a numeric vector with exact names that specifies the weights for the weighted
averaging in wsum_scaled

... not used, but necessary to absorb unused inputs from dtwSP

Details

Several approaches of computing the similarity measure (simple, HerlaEtAl2021, tsa_WLdetection,
rta_WLdetection) represent different flavours of the approach detailed in Herla et al (2021). In
essence, they are a simple approach to incorporate avalanche hazard relevant characteristics into the
score by computing the score as arithmetic mean of 4 different grain type classes:

• weak layers (wl): SH and DH

• new snow (pp): PP and DF

• crusts (cr): MFcr and IF

• bulk: the rest (i.e., predominantly RG, FC, FCxr — MF falls also in here, will maybe be
adjusted in future.)

Additionally, for classes wl and cr, vertical windows are computed to weigh layers more heavily
that have no other wl or cr grain types in their neighborhood.

Type simple deviates from simple2 (= HerlaEtAl2021) by computing the aforementioned vertical
windows based on heuristic depth ranges (i.e., Surface–30cm depth–80cm depth–150cm depth–
Ground). It is otherwise identical to the simple2 type, which computes as many numbers of equidis-
tant vertical windows as number of wl or cr are present in the profile.

Type tsa_WLdetection employs a similar approach as simple, but it identifies weak layers (wl)
based on the Threshold Sum Approach (>= 5 TSA, lemons, German ’Nieten’). Therefore, the
original profiles need to contain grain size information, which allows you to pre-compute the lemons
for all layers (additionally to the otherwise necessary gain type and hardness information). It is
thus more targeted to simulated profiles or detailed manual profiles of very high quality. While
the former two types neglect hardness information of wl and cr classes, this type does not. Type
rta_WLdetection works analogous, but uses RTA instead of TSA and a threshold of >= 0.8.

Unlike the former types, layerwise applies no weighting at all if used as per default. That means
that the similarity of each individual layer contributes equally to the overall similarity measure. It is,
however, very flexible in that any custom scaling factor can be applied to each layer. The resulting
similarity score is then computed by

• sim = sim_gtype x sim_hardness (i.e., an array of similarities, one for each layer)

• simSP = sum(sim * scalingFactor) / sum(scalingFactor),

where the denominator ensures that the resulting score will be within [0, 1]. If you want to
explore your own scaling approach, both input snow profiles need to contain a column called
$layers$scalingFactor that store the desired factor. Type rta_scaling is a special case of layerwise,
where the scaling is determined by the relative lemons of each layer (RTA, see Monti et al 2013).

54 simSP

Type remotesensing makes use of the layerwise algorithm, but triggers an alternative similarity
computation beforehand. Similarity is first computed from density and Optical Grain Size (ogs),
and then the layerwise similarity is called upon to compute the global sim score.

The newest approach wsum_scaled differs from all approaches before on a foundational level.
While all other approaches compute the similarity of two layers by multiplying their similarities
in various layer properties (e.g., gtype, hardness), this approach computes a weighted sum of the
similarities of three layer properties: gtype, hardness, layer stability. Differently than previous
approaches, the layer stability is not only used for scaling purposes but also for the similarity calcu-
lation itself. By scaling the similarity with stability, unstable layers get more weight in the resulting
score. By additionally including the similarity of layer stability in the similarity calculation, pro-
files with similar stability patterns get a higher score. By using a weighted sum to combine the
three layer properties, the approach is identical to how the underlying alignment of the profiles is
computed. The resulting similarity score is computed by

• sim = w1 x sim_gtype + w2 x sim_hardness + w3 x sim_stability (i.e., an array of similarities,
one for each layer)

• simSP = sum(sim * stability) / sum(stability),

where layer stability defaults to p_unstable, or to scalingFactor (if apply_scalingFactor is TRUE).

NOTE that for all types that include stability indices (TSA, RTA, p_unstable, scalingFactor), these
measures need to be computed prior to aligning the profiles (and therefore need to be present in the
profiles provided to this function!)

Value

Either a scalar similarity between [0, 1] with 1 referring to the two profiles being identical, or (if
returnDF is TRUE) a list with the elements $sim and $simDF.

References

Herla, F., Horton, S., Mair, P., & Haegeli, P. (2021). Snow profile alignment and similarity assess-
ment for aggregating, clustering, and evaluating of snowpack model output for avalanche forecast-
ing. Geoscientific Model Development, 14(1), 239–258. https://doi.org/10.5194/gmd-14-239-2021

Monti, F., & Schweizer, J. (2013). A relative difference approach to detect potential weak layers
within a snow profile. Proceedings of the 2013 International Snow Science Workshop, Grenoble,
France, 339–343. Retrieved from https://arc.lib.montana.edu/snow-science/item.php?id=1861

Examples

first align two profiles, then assess the similarity of the aligned profiles
alignment <- dtwSP(SPpairs$A_modeled, SPpairs$A_manual)
SIM <- simSP(alignment$queryWarped, alignment$reference, verbose = TRUE)

similarity of identical profiles
SIM <- simSP(alignment$queryWarped, alignment$queryWarped, verbose = TRUE)

non-matched layers become apparent here:
alignment <- plotSPalignment(SPpairs$C_day1, SPpairs$C_day2, keep.alignment = TRUE,

rescale2refHS = FALSE, checkGlobalAlignment = FALSE)

SPgroup2 55

simSP(alignment$queryWarped, alignment$reference, nonMatchedSim = 0.5)
smaller similarity score due to 'penalty' of non-matched layers:
simSP(alignment$queryWarped, alignment$reference, nonMatchedSim = 0)
even smaller similarity score due to higher impact of non-matched layer thickness:
simSP(alignment$queryWarped, alignment$reference, nonMatchedSim = 0, nonMatchedThickness = 1)

detect WL based on lemons (instead of grain type alone):
P1 <- computeTSA(SPpairs$D_generalAlignment1)
P2 <- computeTSA(SPpairs$D_generalAlignment2)
alignment <- dtwSP(P1, P2, simType = "tsa_wldetection")
sim based on WL-detection with TSA:
simSP(alignment$queryWarped, alignment$reference, type = "tsa_wldetection", verbose = TRUE)
sim solely based on grain type, neglecting TSA information
simSP(alignment$queryWarped, alignment$reference, type = "simple", verbose = TRUE)

RTA scaling type
P1 <- computeRTA(P1)
P2 <- computeRTA(P2)
alignment <- dtwSP(P1, P2, simType = "rta_scaling")
sim based on scaling with RTA
simSP(alignment$queryWarped, alignment$reference, type = "rta_scaling")
sim based on WL-detection with RTA
simSP(alignment$queryWarped, alignment$reference, type = "rta_wldetection")
sim based on WL-detection with TSA
simSP(alignment$queryWarped, alignment$reference, type = "tsa_wldetection")

layerwise similarity (i) unscaled...
simSP(alignment$queryWarped, alignment$reference, type = "layerwise", verbose = TRUE)

##... or (ii) with custom scaling factor (example only illustrative)
alignment$queryWarped$layers$scalingFactor <- 0.1
alignment$queryWarped$layers$scalingFactor[findPWL(alignment$queryWarped)] <- 1
alignment$reference$layers$scalingFactor <- 0.1
alignment$reference$layers$scalingFactor[findPWL(alignment$reference)] <- 1
simSP(alignment$queryWarped, alignment$reference, type = "layerwise",

apply_scalingFactor = TRUE, verbose = TRUE)

SPgroup2 Additional example set of snow profiles

Description

Additional example set of snow profiles. The main difference to the example data set sarp.snowprofile::SPgroup
is that SPgroup2 contains various different stability indices.

Usage

SPgroup2

56 SPspacetime

Format

A sarp.snowprofile::snowprofileSet

See Also

sarp.snowprofile::SPgroup

Examples

plot(SPgroup2, SortMethod = "unsorted")

SPspacetime Additional example set of snow profiles

Description

Additional example set of 4 spatially distributed snow profiles for 5 consecutive days, also contain-
ing different stability indices.

Usage

SPspacetime

Format

A snowprofileSet

See Also

SPgroup2

Examples

plot(SPspacetime, SortMethod = "elev")

swissSimilarityMatrix 57

swissSimilarityMatrix Similarity Matrix of Snow Grain Types

Description

as defined by Lehning et al (2001). A similarity of 1 represents identity, 0 represents total dissimi-
larity.

Usage

swissSimilarityMatrix

Format

A data.frame

Examples

print(swissSimilarityMatrix)

warpSP Warp one snow profile onto another one

Description

After the DTW alignment of two profiles, the maps between the two profiles can be used to warp
one profile onto the other profile. In other words, the layer thicknesses of the warped profile are
adjusted to optimally align with the corresponding layers of the other profile.

Usage

warpSP(alignment, whom = NA)

Arguments

alignment DTW alignment object from dtwSP containing the two profiles (i.e., called
dtwSP(..., keep.internals = TRUE))

whom whom to warp? "query" (= "jmin"), "imin", "queryTopDown" (= "jminTop-
Down"), "iminTopDown", "ref"; if ’NA’ the routine determines that itself from
the structure of the alignment object. (see Details)

58 warpSP

Details

After this procedure, the thickness of some layers can be zero, which leads to the layers disappear-
ing.

This function is automatically called in dtwSP(..., keep.internals = TRUE) to warp the query
profile onto the reference profile.

Whom to warp: There exist 8 different options, 4 for warping the query onto the ref and 4 for vice
versa. The 4 options for warping the query onto the ref are:

• global alignment / partial alignment where entire query is matched to subsequence of ref
("jmin")

• partial alignment where entire ref is matched to subsequence of query ("imin")

• partial top down alignment where entire query is matched to subsequence of ref ("jminTop-
Down")

• partial top down alignment where entire ref is matched to subsequence of query ("iminTop-
Down")

For the other case, warping the ref onto the query, only the equivalent of the first option is imple-
mented.

For developers: Including new variables in the output of warped profiles can easily be done by
inserting a respective command at the end of this function. There are many example variables
added already.

Value

Returns the input alignment object including the element alignment$queryWarped (or $reference-
Warped), which are the warped snow profiles. The class of the alignment object is altered to
"dtwSP", but still inherits "dtw".

Author(s)

fherla

Examples

first align profiles
alignment <- dtwSP(SPpairs$A_modeled, SPpairs$A_manual, open.end = FALSE)

warp reference profile onto query profile:
refWarped <- warpSP(alignment, whom = "ref")$referenceWarped
opar <- par(no.readonly =TRUE)
par(mfrow = c(1, 2))
plot(alignment$query, main = "query")
plot(refWarped, main = "warped reference")
par(opar)

warpWindowSP 59

warpWindowSP Restrict the DTW warping window for snow profiles alignment

Description

Given a matrix, this function sets all elements of the matrix that are outside the so-called warping
window to NA. The warping window is a slanted band of constant width around the main diagonal
(i.e., Sakoe-Chiba-band), and it’s size can be controlled with function arguments.

Usage

warpWindowSP(
iw,
jw,
iheight,
jheight,
iddate,
jddate,
profile.size,
profile.height,
window.size = 0.3,
window.size.abs = NA,
ddate.window.size = Inf,
...

)

Arguments

iw matrix of integers indicating their row number (cf., ?row)

jw matrix of integers indicating their column number (cf., ?col)

iheight matrix of query height filled into the columns of the matrix

jheight matrix of ref height filled into the rows of the matrix

iddate same as iheight, but containing deposition date information (i.e., POSIXct data
converted to numeric through matrix call!)

jddate same as jheight, but containing deposition date information (i.e., POSIXct data
converted to numeric through matrix call!)

profile.size number of layers in the longer one of the two profiles (scalar)

profile.height snow height of the deeper one of the two profiles (scalar)

window.size percentage of profile.size or profile.height defining the size of the warping win-
dow (i.e., the most restrictive of the two will be applied)

window.size.abs

Instead of a window.size percentage, an absolute value (in cm!) can be pro-
vided

60 warpWindowSP

ddate.window.size

number of days that exclude layers from the warping window if their deposition
dates differ by more than these days

... unused—but important to be able to provide other warping functions to distance-
SPlayers

See Also

dtw::dtwWindowingFunctions

Index

∗ Grain
swissSimilarityMatrix, 57

∗ Similarity
swissSimilarityMatrix, 57

∗ Type
swissSimilarityMatrix, 57

∗ datasets
SPgroup2, 55
SPspacetime, 56

averageSP, 3, 3, 4, 9, 10, 12, 14, 15, 17, 18
averageSPalongSeason, 6, 8, 20, 21

backtrackLayers, 9, 10, 11, 49

chooseICavg, 4, 13
cluster::fanny, 15, 18
cluster::pam, 15, 18
clusterSP, 14, 19, 20, 25, 39
clusterSPcenters, 16, 17, 18, 20
clusterSPconfig, 15–17, 18, 19, 23
clusterSPkdba, 15, 16, 18, 19
concat_avgSP_timeseries, 20

dbaSP, 3–5, 9–13, 18
dbaSP (averageSP), 3
ddateDistance, 21
densityDistance, 22
distanceSP, 15, 18, 23, 36
distanceSPlayers, 18, 25, 28, 29, 43, 60
dtw::dtw, 28, 29
dtw::dtwWindowingFunctions, 26, 60
dtw::stepPattern, 28
dtwSP, 5, 8, 9, 23, 24, 26, 27, 36, 40, 43, 49,

52, 53, 57

extractFromScoringMatrix, 30

flipLayers, 31

gpar, 43

grainSimilarity_align, 26, 29, 31, 32, 35
grainSimilarity_evaluate, 31, 32, 32, 52

hardnessDistance, 33

interactiveAlignment, 34

layerWeightingMat, 26, 28, 32, 35

match, 36
match_with_tolerance, 35
medoidSP, 17, 25, 36
mergeIdentLayers, 37, 45, 47

ogsDistance, 38

par, 41
plot.clusterSP, 16, 39
plotCostDensitySP, 40, 42
plotSPalignment, 30, 42
puDistance, 44

resampleSP, 29, 45, 47
resampleSPpairs, 27, 29, 45, 46
reScaleSampleSPx, 48
return_conceptually_similar_gtypes, 49
rmZeroThicknessLayers, 49

sarp.snowprofile::deriveDatetag, 5
sarp.snowprofile::findPWL, 4, 13, 14
sarp.snowprofile::labelPWL, 3, 9, 10
sarp.snowprofile::numberOfPWLsPerVerticalLevel,

13
sarp.snowprofile::plot.snowprofile, 43
sarp.snowprofile::plot.snowprofileSet,

39
sarp.snowprofile::snowprofile, 5, 9, 14,

23
sarp.snowprofile::snowprofileSet, 4, 8,

10, 13, 14, 17, 19, 23, 36, 39, 56
sarp.snowprofile::SPgroup, 55, 56

61

62 INDEX

scaleSnowHeight, 29, 50
sim2dist, 26, 51, 52
simSP, 4, 9, 18, 23–25, 28–30, 32, 36, 51
snowprofileSet, 56
SPgroup2, 55, 56
SPspacetime, 56
stats::hclust, 15, 18
summary, 4
swissSimilarityMatrix, 57

warpSP, 29, 49, 57
warpWindowSP, 26, 28, 59

	averageSP
	averageSPalongSeason
	backtrackLayers
	chooseICavg
	clusterSP
	clusterSPcenters
	clusterSPconfig
	clusterSPkdba
	concat_avgSP_timeseries
	ddateDistance
	densityDistance
	distanceSP
	distanceSPlayers
	dtwSP
	extractFromScoringMatrix
	flipLayers
	grainSimilarity_align
	grainSimilarity_evaluate
	hardnessDistance
	interactiveAlignment
	layerWeightingMat
	match_with_tolerance
	medoidSP
	mergeIdentLayers
	ogsDistance
	plot.clusterSP
	plotCostDensitySP
	plotSPalignment
	puDistance
	resampleSP
	resampleSPpairs
	reScaleSampleSPx
	return_conceptually_similar_gtypes
	rmZeroThicknessLayers
	scaleSnowHeight
	sim2dist
	simSP
	SPgroup2
	SPspacetime
	swissSimilarityMatrix
	warpSP
	warpWindowSP
	Index

