
Package ‘mlr3fselect’
September 9, 2024

Title Feature Selection for 'mlr3'

Version 1.1.0

Description Feature selection package of the 'mlr3' ecosystem. It selects
the optimal feature set for any 'mlr3' learner. The package works with
several optimization algorithms e.g. Random Search, Recursive Feature
Elimination, and Genetic Search. Moreover, it can automatically
optimize learners and estimate the performance of optimized feature
sets with nested resampling.

License LGPL-3

URL https://mlr3fselect.mlr-org.com,

https://github.com/mlr-org/mlr3fselect

BugReports https://github.com/mlr-org/mlr3fselect/issues

Depends mlr3 (>= 0.12.0), R (>= 3.1.0)

Imports bbotk (>= 1.0.0), checkmate (>= 2.0.0), data.table, lgr,
mlr3misc (>= 0.15.1), paradox (>= 1.0.0), R6, stabm

Suggests e1071, genalg, mlr3learners, mlr3pipelines, rpart, testthat
(>= 3.0.0)

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

Language en-US

NeedsCompilation no

RoxygenNote 7.3.2

Collate 'ArchiveBatchFSelect.R' 'AutoFSelector.R'
'CallbackBatchFSelect.R' 'ContextBatchFSelect.R'
'EnsembleFSResult.R' 'FSelectInstanceBatchSingleCrit.R'
'FSelectInstanceBatchMultiCrit.R' 'mlr_fselectors.R'
'FSelector.R' 'FSelectorBatch.R' 'FSelectorBatchDesignPoints.R'
'FSelectorBatchExhaustiveSearch.R'
'FSelectorBatchFromOptimizerBatch.R'

1

https://mlr3fselect.mlr-org.com
https://github.com/mlr-org/mlr3fselect
https://github.com/mlr-org/mlr3fselect/issues

2 Contents

'FSelectorBatchGeneticSearch.R' 'FSelectorBatchRFE.R'
'FSelectorBatchRFECV.R' 'FSelectorBatchRandomSearch.R'
'FSelectorBatchSequential.R'
'FSelectorBatchShadowVariableSearch.R' 'ObjectiveFSelect.R'
'ObjectiveFSelectBatch.R' 'assertions.R' 'auto_fselector.R'
'bibentries.R' 'ensemble_fselect.R'
'extract_inner_fselect_archives.R'
'extract_inner_fselect_results.R' 'fselect.R'
'fselect_nested.R' 'helper.R' 'mlr_callbacks.R' 'reexports.R'
'sugar.R' 'zzz.R'

Author Marc Becker [aut, cre] (<https://orcid.org/0000-0002-8115-0400>),
Patrick Schratz [aut] (<https://orcid.org/0000-0003-0748-6624>),
Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>),
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>),
John Zobolas [aut] (<https://orcid.org/0000-0002-3609-8674>)

Maintainer Marc Becker <marcbecker@posteo.de>

Repository CRAN

Date/Publication 2024-09-09 19:00:12 UTC

Contents
mlr3fselect-package . 3
ArchiveBatchFSelect . 4
AutoFSelector . 8
auto_fselector . 12
CallbackBatchFSelect . 16
callback_batch_fselect . 17
ContextBatchFSelect . 19
ensemble_fselect . 20
ensemble_fs_result . 22
extract_inner_fselect_archives . 26
extract_inner_fselect_results . 28
fs . 29
fselect . 30
FSelectInstanceBatchMultiCrit . 33
FSelectInstanceBatchSingleCrit . 35
FSelector . 39
FSelectorBatch . 42
fselect_nested . 44
fsi . 46
mlr3fselect.backup . 48
mlr3fselect.one_se_rule . 49
mlr3fselect.svm_rfe . 50
mlr_fselectors . 50
mlr_fselectors_design_points . 51
mlr_fselectors_exhaustive_search . 53

https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0003-0748-6624
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0002-3609-8674

mlr3fselect-package 3

mlr_fselectors_genetic_search . 55
mlr_fselectors_random_search . 56
mlr_fselectors_rfe . 58
mlr_fselectors_rfecv . 61
mlr_fselectors_sequential . 63
mlr_fselectors_shadow_variable_search . 65
ObjectiveFSelect . 67
ObjectiveFSelectBatch . 69

Index 71

mlr3fselect-package mlr3fselect: Feature Selection for ’mlr3’

Description

Feature selection package of the ’mlr3’ ecosystem. It selects the optimal feature set for any ’mlr3’
learner. The package works with several optimization algorithms e.g. Random Search, Recursive
Feature Elimination, and Genetic Search. Moreover, it can automatically optimize learners and
estimate the performance of optimized feature sets with nested resampling.

Author(s)

Maintainer: Marc Becker <marcbecker@posteo.de> (ORCID)

Authors:

• Patrick Schratz <patrick.schratz@gmail.com> (ORCID)

• Michel Lang <michellang@gmail.com> (ORCID)

• Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

• John Zobolas <bblodfon@gmail.com> (ORCID)

See Also

Useful links:

• https://mlr3fselect.mlr-org.com

• https://github.com/mlr-org/mlr3fselect

• Report bugs at https://github.com/mlr-org/mlr3fselect/issues

https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0003-0748-6624
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0002-3609-8674
https://mlr3fselect.mlr-org.com
https://github.com/mlr-org/mlr3fselect
https://github.com/mlr-org/mlr3fselect/issues

4 ArchiveBatchFSelect

ArchiveBatchFSelect Class for Logging Evaluated Feature Sets

Description

The ArchiveBatchFSelect stores all evaluated feature sets and performance scores.

Details

The ArchiveBatchFSelect is a container around a data.table::data.table(). Each row corre-
sponds to a single evaluation of a feature set. See the section on Data Structure for more informa-
tion. The archive stores additionally a mlr3::BenchmarkResult ($benchmark_result) that records
the resampling experiments. Each experiment corresponds to a single evaluation of a feature set.
The table ($data) and the benchmark result ($benchmark_result) are linked by the uhash column.
If the archive is passed to as.data.table(), both are joined automatically.

Data structure

The table ($data) has the following columns:

• One column for each feature of the task ($search_space).

• One column for each performance measure ($codomain).

• runtime_learners (numeric(1))
Sum of training and predict times logged in learners per mlr3::ResampleResult / evaluation.
This does not include potential overhead time.

• timestamp (POSIXct)
Time stamp when the evaluation was logged into the archive.

• batch_nr (integer(1))
Feature sets are evaluated in batches. Each batch has a unique batch number.

• uhash (character(1))
Connects each feature set to the resampling experiment stored in the mlr3::BenchmarkResult.

Analysis

For analyzing the feature selection results, it is recommended to pass the archive to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each feature set.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the feature sets again on a different
measure. Alternatively, measures can be supplied to as.data.table().

ArchiveBatchFSelect 5

S3 Methods

• as.data.table.ArchiveBatchFSelect(x, exclude_columns = "uhash", measures = NULL)
Returns a tabular view of all evaluated feature sets.
ArchiveBatchFSelect -> data.table::data.table()

– x (ArchiveBatchFSelect)
– exclude_columns (character())

Exclude columns from table. Set to NULL if no column should be excluded.
– measures (list of mlr3::Measure)

Score feature sets on additional measures.

Super classes

bbotk::Archive -> bbotk::ArchiveBatch -> ArchiveBatchFSelect

Public fields

benchmark_result (mlr3::BenchmarkResult)
Benchmark result.

Active bindings

ties_method (character(1))
Method to handle ties.

Methods

Public methods:
• ArchiveBatchFSelect$new()

• ArchiveBatchFSelect$add_evals()

• ArchiveBatchFSelect$learner()

• ArchiveBatchFSelect$learners()

• ArchiveBatchFSelect$predictions()

• ArchiveBatchFSelect$resample_result()

• ArchiveBatchFSelect$print()

• ArchiveBatchFSelect$best()

• ArchiveBatchFSelect$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ArchiveBatchFSelect$new(
search_space,
codomain,
check_values = TRUE,
ties_method = "least_features"

)

6 ArchiveBatchFSelect

Arguments:

search_space (paradox::ParamSet)
Search space. Internally created from provided mlr3::Task by instance.

codomain (bbotk::Codomain)
Specifies codomain of objective function i.e. a set of performance measures. Internally
created from provided mlr3::Measures by instance.

check_values (logical(1))
If TRUE (default), hyperparameter configurations are check for validity.

ties_method (character(1))
The method to break ties when selecting sets while optimizing and when selecting the best
set. Can be "least_features" or "random". The option "least_features" (default)
selects the feature set with the least features. If there are multiple best feature sets with the
same number of features, one is selected randomly. The random method returns a random
feature set from the best feature sets. Ignored if multiple measures are used.

Method add_evals(): Adds function evaluations to the archive table.

Usage:
ArchiveBatchFSelect$add_evals(xdt, xss_trafoed = NULL, ydt)

Arguments:

xdt (data.table::data.table())
x values as data.table. Each row is one point. Contains the value in the search space of
the FSelectInstanceBatchMultiCrit object. Can contain additional columns for extra infor-
mation.

xss_trafoed (list())
Ignored in feature selection.

ydt (data.table::data.table())
Optimal outcome.

Method learner(): Retrieve mlr3::Learner of the i-th evaluation, by position or by unique hash
uhash. i and uhash are mutually exclusive. Learner does not contain a model. Use $learners()
to get learners with models.

Usage:
ArchiveBatchFSelect$learner(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method learners(): Retrieve list of trained mlr3::Learner objects of the i-th evaluation, by
position or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveBatchFSelect$learners(i = NULL, uhash = NULL)

Arguments:

ArchiveBatchFSelect 7

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method predictions(): Retrieve list of mlr3::Prediction objects of the i-th evaluation, by
position or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveBatchFSelect$predictions(i = NULL, uhash = NULL)

Arguments:
i (integer(1))

The iteration value to filter for.
uhash (logical(1))

The uhash value to filter for.

Method resample_result(): Retrieve mlr3::ResampleResult of the i-th evaluation, by position
or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveBatchFSelect$resample_result(i = NULL, uhash = NULL)

Arguments:
i (integer(1))

The iteration value to filter for.
uhash (logical(1))

The uhash value to filter for.

Method print(): Printer.

Usage:
ArchiveBatchFSelect$print()

Arguments:
... (ignored).

Method best(): Returns the best scoring feature sets.

Usage:
ArchiveBatchFSelect$best(batch = NULL, ties_method = NULL)

Arguments:
batch (integer())

The batch number(s) to limit the best results to. Default is all batches.
ties_method (character(1))

Method to handle ties. If NULL (default), the global ties method set during initialization is
used. The default global ties method is least_features which selects the feature set with
the least features. If there are multiple best feature sets with the same number of features,
one is selected randomly. The random method returns a random feature set from the best
feature sets.

Returns: data.table::data.table()

8 AutoFSelector

Method clone(): The objects of this class are cloneable with this method.

Usage:
ArchiveBatchFSelect$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

AutoFSelector Class for Automatic Feature Selection

Description

The AutoFSelector wraps a mlr3::Learner and augments it with an automatic feature selection. The
auto_fselector() function creates an AutoFSelector object.

Details

The AutoFSelector is a mlr3::Learner which wraps another mlr3::Learner and performs the follow-
ing steps during $train():

1. The wrapped (inner) learner is trained on the feature subsets via resampling. The feature
selection can be specified by providing a FSelector, a bbotk::Terminator, a mlr3::Resampling
and a mlr3::Measure.

2. A final model is fit on the complete training data with the best-found feature subset.

During $predict() the AutoFSelector just calls the predict method of the wrapped (inner) learner.

Resources

There are several sections about feature selection in the mlr3book.

• Estimate Model Performance with nested resampling.

The gallery features a collection of case studies and demos about optimization.

Nested Resampling

Nested resampling can be performed by passing an AutoFSelector object to mlr3::resample()
or mlr3::benchmark(). To access the inner resampling results, set store_fselect_instance
= TRUE and execute mlr3::resample() or mlr3::benchmark() with store_models = TRUE (see
examples). The mlr3::Resampling passed to the AutoFSelector is meant to be the inner resampling,
operating on the training set of an arbitrary outer resampling. For this reason it is not feasible to
pass an instantiated mlr3::Resampling here.

Super class

mlr3::Learner -> AutoFSelector

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-autofselect
https://mlr-org.com/gallery.html

AutoFSelector 9

Public fields

instance_args (list())
All arguments from construction to create the FSelectInstanceBatchSingleCrit.

fselector (FSelector)
Optimization algorithm.

Active bindings

archive ([ArchiveBatchFSelect)
Returns FSelectInstanceBatchSingleCrit archive.

learner (mlr3::Learner)
Trained learner.

fselect_instance (FSelectInstanceBatchSingleCrit)
Internally created feature selection instance with all intermediate results.

fselect_result (data.table::data.table)
Short-cut to $result from FSelectInstanceBatchSingleCrit.

predict_type (character(1))
Stores the currently active predict type, e.g. "response". Must be an element of $predict_types.

hash (character(1))
Hash (unique identifier) for this object.

phash (character(1))
Hash (unique identifier) for this partial object, excluding some components which are varied
systematically during tuning (parameter values) or feature selection (feature names).

Methods

Public methods:

• AutoFSelector$new()

• AutoFSelector$base_learner()

• AutoFSelector$importance()

• AutoFSelector$selected_features()

• AutoFSelector$oob_error()

• AutoFSelector$loglik()

• AutoFSelector$print()

• AutoFSelector$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AutoFSelector$new(
fselector,
learner,
resampling,
measure = NULL,
terminator,

10 AutoFSelector

store_fselect_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
ties_method = "least_features"

)

Arguments:

fselector (FSelector)
Optimization algorithm.

learner (mlr3::Learner)
Learner to optimize the feature subset for.

resampling (mlr3::Resampling)
Resampling that is used to evaluated the performance of the feature subsets. Uninstantiated
resamplings are instantiated during construction so that all feature subsets are evaluated on
the same data splits. Already instantiated resamplings are kept unchanged.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the feature selection.

store_fselect_instance (logical(1))
If TRUE (default), stores the internally created FSelectInstanceBatchSingleCrit with all in-
termediate results in slot $fselect_instance. Is set to TRUE, if store_models = TRUE

store_benchmark_result (logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?
check_values (logical(1))

Check the parameters before the evaluation and the results for validity?
callbacks (list of CallbackBatchFSelect)

List of callbacks.
ties_method (character(1))

The method to break ties when selecting sets while optimizing and when selecting the best
set. Can be "least_features" or "random". The option "least_features" (default)
selects the feature set with the least features. If there are multiple best feature sets with the
same number of features, one is selected randomly. The random method returns a random
feature set from the best feature sets. Ignored if multiple measures are used.

Method base_learner(): Extracts the base learner from nested learner objects like GraphLearner
in mlr3pipelines. If recursive = 0, the (tuned) learner is returned.

Usage:
AutoFSelector$base_learner(recursive = Inf)

Arguments:

recursive (integer(1))
Depth of recursion for multiple nested objects.

Returns: mlr3::Learner.

https://CRAN.R-project.org/package=mlr3pipelines

AutoFSelector 11

Method importance(): The importance scores of the final model.

Usage:
AutoFSelector$importance()

Returns: Named numeric().

Method selected_features(): The selected features of the final model. These features are
selected internally by the learner.

Usage:
AutoFSelector$selected_features()

Returns: character().

Method oob_error(): The out-of-bag error of the final model.

Usage:
AutoFSelector$oob_error()

Returns: numeric(1).

Method loglik(): The log-likelihood of the final model.

Usage:
AutoFSelector$loglik()

Returns: logLik. Printer.

Method print():
Usage:
AutoFSelector$print()

Arguments:
... (ignored).

Method clone(): The objects of this class are cloneable with this method.

Usage:
AutoFSelector$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Automatic Feature Selection

split to train and external set
task = tsk("penguins")
split = partition(task, ratio = 0.8)

create auto fselector
afs = auto_fselector(

fselector = fs("random_search"),

12 auto_fselector

learner = lrn("classif.rpart"),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

optimize feature subset and fit final model
afs$train(task, row_ids = split$train)

predict with final model
afs$predict(task, row_ids = split$test)

show result
afs$fselect_result

model slot contains trained learner and fselect instance
afs$model

shortcut trained learner
afs$learner

shortcut fselect instance
afs$fselect_instance

Nested Resampling

afs = auto_fselector(
fselector = fs("random_search"),
learner = lrn("classif.rpart"),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 3)
rr = resample(task, afs, resampling_outer, store_models = TRUE)

retrieve inner feature selection results.
extract_inner_fselect_results(rr)

performance scores estimated on the outer resampling
rr$score()

unbiased performance of the final model trained on the full data set
rr$aggregate()

auto_fselector Function for Automatic Feature Selection

auto_fselector 13

Description

The AutoFSelector wraps a mlr3::Learner and augments it with an automatic feature selection. The
auto_fselector() function creates an AutoFSelector object.

Usage

auto_fselector(
fselector,
learner,
resampling,
measure = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
store_fselect_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
ties_method = "least_features"

)

Arguments

fselector (FSelector)
Optimization algorithm.

learner (mlr3::Learner)
Learner to optimize the feature subset for.

resampling (mlr3::Resampling)
Resampling that is used to evaluated the performance of the feature subsets.
Uninstantiated resamplings are instantiated during construction so that all fea-
ture subsets are evaluated on the same data splits. Already instantiated resam-
plings are kept unchanged.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (bbotk::Terminator)
Stop criterion of the feature selection.

store_fselect_instance

(logical(1))
If TRUE (default), stores the internally created FSelectInstanceBatchSingleCrit
with all intermediate results in slot $fselect_instance. Is set to TRUE, if
store_models = TRUE

14 auto_fselector

store_benchmark_result

(logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

callbacks (list of CallbackBatchFSelect)
List of callbacks.

ties_method (character(1))
The method to break ties when selecting sets while optimizing and when se-
lecting the best set. Can be "least_features" or "random". The option
"least_features" (default) selects the feature set with the least features. If
there are multiple best feature sets with the same number of features, one is se-
lected randomly. The random method returns a random feature set from the best
feature sets. Ignored if multiple measures are used.

Details

The AutoFSelector is a mlr3::Learner which wraps another mlr3::Learner and performs the follow-
ing steps during $train():

1. The wrapped (inner) learner is trained on the feature subsets via resampling. The feature
selection can be specified by providing a FSelector, a bbotk::Terminator, a mlr3::Resampling
and a mlr3::Measure.

2. A final model is fit on the complete training data with the best-found feature subset.

During $predict() the AutoFSelector just calls the predict method of the wrapped (inner) learner.

Value

AutoFSelector.

Resources

There are several sections about feature selection in the mlr3book.

• Estimate Model Performance with nested resampling.

The gallery features a collection of case studies and demos about optimization.

Nested Resampling

Nested resampling can be performed by passing an AutoFSelector object to mlr3::resample()
or mlr3::benchmark(). To access the inner resampling results, set store_fselect_instance
= TRUE and execute mlr3::resample() or mlr3::benchmark() with store_models = TRUE (see
examples). The mlr3::Resampling passed to the AutoFSelector is meant to be the inner resampling,
operating on the training set of an arbitrary outer resampling. For this reason it is not feasible to
pass an instantiated mlr3::Resampling here.

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-autofselect
https://mlr-org.com/gallery.html

auto_fselector 15

Examples

Automatic Feature Selection

split to train and external set
task = tsk("penguins")
split = partition(task, ratio = 0.8)

create auto fselector
afs = auto_fselector(

fselector = fs("random_search"),
learner = lrn("classif.rpart"),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

optimize feature subset and fit final model
afs$train(task, row_ids = split$train)

predict with final model
afs$predict(task, row_ids = split$test)

show result
afs$fselect_result

model slot contains trained learner and fselect instance
afs$model

shortcut trained learner
afs$learner

shortcut fselect instance
afs$fselect_instance

Nested Resampling

afs = auto_fselector(
fselector = fs("random_search"),
learner = lrn("classif.rpart"),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 3)
rr = resample(task, afs, resampling_outer, store_models = TRUE)

retrieve inner feature selection results.
extract_inner_fselect_results(rr)

performance scores estimated on the outer resampling
rr$score()

16 CallbackBatchFSelect

unbiased performance of the final model trained on the full data set
rr$aggregate()

CallbackBatchFSelect Create Feature Selection Callback

Description

Specialized bbotk::CallbackBatch for feature selection. Callbacks allow customizing the behavior
of processes in mlr3fselect. The callback_batch_fselect() function creates a CallbackBatchF-
Select. Predefined callbacks are stored in the dictionary mlr_callbacks and can be retrieved with
clbk(). For more information on callbacks see callback_batch_fselect().

Super classes

mlr3misc::Callback -> bbotk::CallbackBatch -> CallbackBatchFSelect

Public fields

on_eval_after_design (function())
Stage called after design is created. Called in ObjectiveFSelectBatch$eval_many().

on_eval_after_benchmark (function())
Stage called after feature sets are evaluated. Called in ObjectiveFSelectBatch$eval_many().

on_eval_before_archive (function())
Stage called before performance values are written to the archive. Called in ObjectiveFSelectBatch$eval_many().

Methods

Public methods:
• CallbackBatchFSelect$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
CallbackBatchFSelect$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Write archive to disk
callback_batch_fselect("mlr3fselect.backup",

on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")

}
)

callback_batch_fselect 17

callback_batch_fselect

Create Feature Selection Callback

Description

Function to create a CallbackBatchFSelect. Predefined callbacks are stored in the dictionary mlr_callbacks
and can be retrieved with clbk().

Feature selection callbacks can be called from different stages of feature selection. The stages are
prefixed with on_*.

Start Feature Selection
- on_optimization_begin
Start FSelect Batch

- on_optimizer_before_eval
Start Evaluation

- on_eval_after_design
- on_eval_after_benchmark
- on_eval_before_archive

End Evaluation
- on_optimizer_after_eval

End FSelect Batch
- on_result
- on_optimization_end

End Feature Selection

See also the section on parameters for more information on the stages. A feature selection callback
works with bbotk::ContextBatch and ContextBatchFSelect.

Usage

callback_batch_fselect(
id,
label = NA_character_,
man = NA_character_,
on_optimization_begin = NULL,
on_optimizer_before_eval = NULL,
on_eval_after_design = NULL,
on_eval_after_benchmark = NULL,
on_eval_before_archive = NULL,
on_optimizer_after_eval = NULL,
on_result = NULL,
on_optimization_end = NULL

)

18 callback_batch_fselect

Arguments

id (character(1))
Identifier for the new instance.

label (character(1))
Label for the new instance.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.
The referenced help package can be opened via method $help().

on_optimization_begin

(function())
Stage called at the beginning of the optimization. Called in Optimizer$optimize().

on_optimizer_before_eval

(function())
Stage called after the optimizer proposes points. Called in OptimInstance$eval_batch().

on_eval_after_design

(function())
Stage called after design is created. Called in ObjectiveFSelectBatch$eval_many().

on_eval_after_benchmark

(function())
Stage called after feature sets are evaluated. Called in ObjectiveFSelectBatch$eval_many().

on_eval_before_archive

(function())
Stage called before performance values are written to the archive. Called in
ObjectiveFSelectBatch$eval_many().

on_optimizer_after_eval

(function())
Stage called after points are evaluated. Called in OptimInstance$eval_batch().

on_result (function())
Stage called after result are written. Called in OptimInstance$assign_result().

on_optimization_end

(function())
Stage called at the end of the optimization. Called in Optimizer$optimize().

Details

When implementing a callback, each function must have two arguments named callback and
context.

A callback can write data to the state ($state), e.g. settings that affect the callback itself. Avoid
writing large data the state. This can slow down the feature selection when the evaluation of con-
figurations is parallelized.

Feature selection callbacks access two different contexts depending on the stage. The stages on_eval_after_design,
on_eval_after_benchmark, on_eval_before_archive access ContextBatchFSelect. This con-
text can be used to customize the evaluation of a batch of feature sets. Changes to the state of
callback are lost after the evaluation of a batch and changes to the fselect instance or the fselector
are not possible. Persistent data should be written to the archive via $aggregated_performance

ContextBatchFSelect 19

(see ContextBatchFSelect). The other stages access bbotk::ContextBatch. This context can be used
to modify the fselect instance, archive, fselector and final result. There are two different contexts
because the evaluation can be parallelized i.e. multiple instances of ContextBatchFSelect exists on
different workers at the same time.

Examples

Write archive to disk
callback_batch_fselect("mlr3fselect.backup",

on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")

}
)

ContextBatchFSelect Evaluation Context

Description

The ContextBatchFSelect allows CallbackBatchFSelects to access and modify data while a batch
of feature sets is evaluated. See the section on active bindings for a list of modifiable objects. See
callback_batch_fselect() for a list of stages that access ContextBatchFSelect.

Details

This context is re-created each time a new batch of feature sets is evaluated. Changes to $objective_fselect,
$design $benchmark_result are discarded after the function is finished. Modification on the data
table in $aggregated_performance are written to the archive. Any number of columns can be
added.

Super classes

mlr3misc::Context -> bbotk::ContextBatch -> ContextBatchFSelect

Active bindings

xss (list())
The feature sets of the latest batch.

design (data.table::data.table)
The benchmark design of the latest batch.

benchmark_result (mlr3::BenchmarkResult)
The benchmark result of the latest batch.

aggregated_performance (data.table::data.table)
Aggregated performance scores and training time of the latest batch. This data table is passed
to the archive. A callback can add additional columns which are also written to the archive.

20 ensemble_fselect

Methods

Public methods:
• ContextBatchFSelect$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ContextBatchFSelect$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ensemble_fselect Ensemble Feature Selection

Description

Ensemble feature selection using multiple learners. The ensemble feature selection method is de-
signed to identify the most informative features from a given dataset by leveraging multiple machine
learning models and resampling techniques. Returns an EnsembleFSResult.

Usage

ensemble_fselect(
fselector,
task,
learners,
init_resampling,
inner_resampling,
measure,
terminator,
callbacks = NULL,
store_benchmark_result = TRUE,
store_models = TRUE

)

Arguments

fselector (FSelector)
Optimization algorithm.

task (mlr3::Task)
Task to operate on.

learners (list of mlr3::Learner)
The learners to be used for feature selection.

init_resampling

(mlr3::Resampling)
The initial resampling strategy of the data, from which each train set will be
passed on to the learners. Can only be mlr3::ResamplingSubsampling or mlr3::ResamplingBootstrap.

ensemble_fselect 21

inner_resampling

(mlr3::Resampling)
The inner resampling strategy used by the FSelector.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the feature selection.

callbacks (list of lists of CallbackBatchFSelect)
Callbacks to be used for each learner. The lists must have the same length as the
number of learners.

store_benchmark_result

(logical(1))
Whether to store the benchmark result in EnsembleFSResult or not.

store_models (logical(1))
Whether to store models in auto_fselector or not.

Details

The method begins by applying an initial resampling technique specified by the user, to create
multiple subsamples from the original dataset. This resampling process helps in generating diverse
subsets of data for robust feature selection.

For each subsample generated in the previous step, the method performs wrapped-based feature
selection (auto_fselector) using each provided learner, the given inner resampling method, perfor-
mance measure and optimization algorithm. This process generates the best feature subset for each
combination of subsample and learner. Results are stored in an EnsembleFSResult.

Value

an EnsembleFSResult object.

Source

Saeys, Yvan, Abeel, Thomas, Van De Peer, Yves (2008). “Robust feature selection using ensemble
feature selection techniques.” Machine Learning and Knowledge Discovery in Databases, 5212
LNAI, 313–325. doi:10.1007/9783540874812_21.

Abeel, Thomas, Helleputte, Thibault, Van de Peer, Yves, Dupont, Pierre, Saeys, Yvan (2010).
“Robust biomarker identification for cancer diagnosis with ensemble feature selection methods.”
Bioinformatics, 26, 392–398. ISSN 1367-4803, doi:10.1093/BIOINFORMATICS/BTP630.

Pes, Barbara (2020). “Ensemble feature selection for high-dimensional data: a stability analy-
sis across multiple domains.” Neural Computing and Applications, 32(10), 5951–5973. ISSN
14333058, doi:10.1007/s00521019040823.

Examples

efsr = ensemble_fselect(
fselector = fs("random_search"),
task = tsk("sonar"),
learners = lrns(c("classif.rpart", "classif.featureless")),

https://doi.org/10.1007/978-3-540-87481-2_21
https://doi.org/10.1093/BIOINFORMATICS/BTP630
https://doi.org/10.1007/s00521-019-04082-3

22 ensemble_fs_result

init_resampling = rsmp("subsampling", repeats = 2),
inner_resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
terminator = trm("evals", n_evals = 10)

)
efsr

ensemble_fs_result Ensemble Feature Selection Result

Description

The EnsembleFSResult stores the results of ensemble feature selection. It includes methods for
evaluating the stability of the feature selection process and for ranking the selected features among
others. The function ensemble_fselect() returns an object of this class.

S3 Methods

• as.data.table.EnsembleFSResult(x, benchmark_result = TRUE)
Returns a tabular view of the ensemble feature selection.
EnsembleFSResult -> data.table::data.table()

– x (EnsembleFSResult)
– benchmark_result (logical(1))

Whether to add the learner, task and resampling information from the benchmark result.

Public fields

benchmark_result (mlr3::BenchmarkResult)
The benchmark result.

man (character(1))
Manual page for this object.

Active bindings

result (data.table::data.table)
Returns the result of the ensemble feature selection.

n_learners (numeric(1))
Returns the number of learners used in the ensemble feature selection.

measure (character(1))
Returns the measure id used in the ensemble feature selection.

ensemble_fs_result 23

Methods

Public methods:

• EnsembleFSResult$new()

• EnsembleFSResult$format()

• EnsembleFSResult$print()

• EnsembleFSResult$help()

• EnsembleFSResult$feature_ranking()

• EnsembleFSResult$stability()

• EnsembleFSResult$pareto_front()

• EnsembleFSResult$knee_points()

• EnsembleFSResult$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
EnsembleFSResult$new(
result,
features,
benchmark_result = NULL,
measure_id,
minimize = TRUE

)

Arguments:

result (data.table::data.table)
The result of the ensemble feature selection. Column names should include "resampling_iteration",
"learner_id", "features" and "n_features".

features (character())
The vector of features of the task that was used in the ensemble feature selection.

benchmark_result (mlr3::BenchmarkResult)
The benchmark result object.

measure_id (character(1))
Column name of "result" that corresponds to the measure used.

minimize (logical(1))
If TRUE (default), lower values of the measure correspond to higher performance.

Method format(): Helper for print outputs.

Usage:
EnsembleFSResult$format(...)

Arguments:

... (ignored).

Method print(): Printer.

Usage:
EnsembleFSResult$print(...)

24 ensemble_fs_result

Arguments:

... (ignored).

Method help(): Opens the corresponding help page referenced by field $man.

Usage:
EnsembleFSResult$help()

Method feature_ranking(): Calculates the feature ranking.

Usage:
EnsembleFSResult$feature_ranking(method = "approval_voting")

Arguments:

method (character(1))
The method to calculate the feature ranking.

Details: The feature ranking process is built on the following framework: models act as voters,
features act as candidates, and voters select certain candidates (features). The primary objec-
tive is to compile these selections into a consensus ranked list of features, effectively forming a
committee. Currently, only "approval_voting" method is supported, which selects the candi-
dates/features that have the highest approval score or selection frequency, i.e. appear the most
often.

Returns: A data.table::data.table listing all the features, ordered by decreasing inclusion prob-
ability scores (depending on the method)

Method stability(): Calculates the stability of the selected features with the stabm pack-
age. The results are cached. When the same stability measure is requested again with different
arguments, the cache must be reset.

Usage:
EnsembleFSResult$stability(
stability_measure = "jaccard",
stability_args = NULL,
global = TRUE,
reset_cache = FALSE

)

Arguments:

stability_measure (character(1))
The stability measure to be used. One of the measures returned by stabm::listStabilityMeasures()
in lower case. Default is "jaccard".

stability_args (list)
Additional arguments passed to the stability measure function.

global (logical(1))
Whether to calculate the stability globally or for each learner.

reset_cache (logical(1))
If TRUE, the cached results are ignored.

Returns: A numeric() value representing the stability of the selected features. Or a numeric()
vector with the stability of the selected features for each learner.

https://CRAN.R-project.org/package=stabm

ensemble_fs_result 25

Method pareto_front(): This function identifies the Pareto front of the ensemble feature
selection process, i.e., the set of points that represent the trade-off between the number of features
and performance (e.g. classification error).

Usage:
EnsembleFSResult$pareto_front(type = "empirical")

Arguments:

type (character(1))
Specifies the type of Pareto front to return. See details.

Details: Two options are available for the Pareto front:
• "empirical" (default): returns the empirical Pareto front.
• "estimated": the Pareto front points are estimated by fitting a linear model with the in-

versed of the number of features (1/x) as input and the associated performance scores as
output. This method is useful when the Pareto points are sparse and the front assumes a
convex shape if better performance corresponds to lower measure values (e.g. classification
error), or a concave shape otherwise (e.g. classification accuracy). The estimated Pareto
front will include points for a number of features ranging from 1 up to the maximum number
found in the empirical Pareto front.

Returns: A data.table::data.table with columns the number of features and the performance that
together form the Pareto front.

Method knee_points(): This function implements various knee point identification (KPI)
methods, which select points in the Pareto front, such that an optimal trade-off between per-
formance and number of features is achieved. In most cases, only one such point is returned.

Usage:
EnsembleFSResult$knee_points(method = "NBI", type = "empirical")

Arguments:

method (character(1))
Type of method to use to identify the knee point. See details.

type (character(1))
Specifies the type of Pareto front to use for the identification of the knee point. See pareto_front()
method for more details.

Details: The available KPI methods are:
• "NBI" (default): The Normal-Boundary Intersection method is a geometry-based method

which calculates the perpendicular distance of each point from the line connecting the first
and last points of the Pareto front. The knee point is determined as the Pareto point with the
maximum distance from this line, see Das (1999).

Returns: A data.table::data.table with the knee point(s) of the Pareto front.

Method clone(): The objects of this class are cloneable with this method.

Usage:
EnsembleFSResult$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

26 extract_inner_fselect_archives

References

Das, I (1999). “On characterizing the ’knee’ of the Pareto curve based on normal-boundary inter-
section.” Structural Optimization, 18(1-2), 107–115. ISSN 09344373.

Examples

efsr = ensemble_fselect(
fselector = fs("rfe", n_features = 2, feature_fraction = 0.8),
task = tsk("sonar"),
learners = lrns(c("classif.rpart", "classif.featureless")),
init_resampling = rsmp("subsampling", repeats = 2),
inner_resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
terminator = trm("none")

)

contains the benchmark result
efsr$benchmark_result

contains the selected features for each iteration
efsr$result

returns the stability of the selected features
efsr$stability(stability_measure = "jaccard")

returns a ranking of all features
head(efsr$feature_ranking())

returns the empirical pareto front (nfeatures vs error)
efsr$pareto_front()

extract_inner_fselect_archives

Extract Inner Feature Selection Archives

Description

Extract inner feature selection archives of nested resampling. Implemented for mlr3::ResampleResult
and mlr3::BenchmarkResult. The function iterates over the AutoFSelector objects and binds the
archives to a data.table::data.table(). AutoFSelector must be initialized with store_fselect_instance
= TRUE and resample() or benchmark() must be called with store_models = TRUE.

Usage

extract_inner_fselect_archives(x, exclude_columns = "uhash")

extract_inner_fselect_archives 27

Arguments

x (mlr3::ResampleResult | mlr3::BenchmarkResult).
exclude_columns

(character())
Exclude columns from result table. Set to NULL if no column should be excluded.

Value

data.table::data.table().

Data structure

The returned data table has the following columns:

• experiment (integer(1))
Index, giving the according row number in the original benchmark grid.

• iteration (integer(1))
Iteration of the outer resampling.

• One column for each feature of the task.

• One column for each performance measure.

• runtime_learners (numeric(1))
Sum of training and predict times logged in learners per mlr3::ResampleResult / evaluation.
This does not include potential overhead time.

• timestamp (POSIXct)
Time stamp when the evaluation was logged into the archive.

• batch_nr (integer(1))
Feature sets are evaluated in batches. Each batch has a unique batch number.

• resample_result (mlr3::ResampleResult)
Resample result of the inner resampling.

• task_id (character(1)).

• learner_id (character(1)).

• resampling_id (character(1)).

Examples

Nested Resampling on Palmer Penguins Data Set

create auto fselector
at = auto_fselector(

fselector = fs("random_search"),
learner = lrn("classif.rpart"),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 2)
rr = resample(tsk("penguins"), at, resampling_outer, store_models = TRUE)

28 extract_inner_fselect_results

extract inner archives
extract_inner_fselect_archives(rr)

extract_inner_fselect_results

Extract Inner Feature Selection Results

Description

Extract inner feature selection results of nested resampling. Implemented for mlr3::ResampleResult
and mlr3::BenchmarkResult.

Usage

extract_inner_fselect_results(x, fselect_instance, ...)

Arguments

x (mlr3::ResampleResult | mlr3::BenchmarkResult).
fselect_instance

(logical(1))
If TRUE, instances are added to the table.

... (any)
Additional arguments.

Details

The function iterates over the AutoFSelector objects and binds the feature selection results to a
data.table::data.table(). AutoFSelector must be initialized with store_fselect_instance
= TRUE and resample() or benchmark() must be called with store_models = TRUE. Optionally,
the instance can be added for each iteration.

Value

data.table::data.table().

Data structure

The returned data table has the following columns:

• experiment (integer(1))
Index, giving the according row number in the original benchmark grid.

• iteration (integer(1))
Iteration of the outer resampling.

• One column for each feature of the task.

• One column for each performance measure.

fs 29

• features (character())
Vector of selected feature set.

• task_id (character(1)).

• learner_id (character(1)).

• resampling_id (character(1)).

Examples

Nested Resampling on Palmer Penguins Data Set

create auto fselector
at = auto_fselector(

fselector = fs("random_search"),
learner = lrn("classif.rpart"),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 2)
rr = resample(tsk("iris"), at, resampling_outer, store_models = TRUE)

extract inner results
extract_inner_fselect_results(rr)

fs Syntactic Sugar for FSelect Construction

Description

Functions to retrieve objects, set parameters and assign to fields in one go. Relies on mlr3misc::dictionary_sugar_get()
to extract objects from the respective mlr3misc::Dictionary:

• fs() for a FSelector from mlr_fselectors.

• fss() for a list of a FSelector from mlr_fselectors.

• trm() for a bbotk::Terminator from mlr_terminators.

• trms() for a list of Terminators from mlr_terminators.

Usage

fs(.key, ...)

fss(.keys, ...)

30 fselect

Arguments

.key (character(1))
Key passed to the respective dictionary to retrieve the object.

... (any)
Additional arguments.

.keys (character())
Keys passed to the respective dictionary to retrieve multiple objects.

Value

R6::R6Class object of the respective type, or a list of R6::R6Class objects for the plural versions.

Examples

random search with batch size of 5
fs("random_search", batch_size = 5)

run time terminator with 20 seconds
trm("run_time", secs = 20)

fselect Function for Feature Selection

Description

Function to optimize the features of a mlr3::Learner. The function internally creates a FSelectIn-
stanceBatchSingleCrit or FSelectInstanceBatchMultiCrit which describes the feature selection prob-
lem. It executes the feature selection with the FSelector (method) and returns the result with the
fselect instance ($result). The ArchiveBatchFSelect ($archive) stores all evaluated hyperparam-
eter configurations and performance scores.

Usage

fselect(
fselector,
task,
learner,
resampling,
measures = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
ties_method = "least_features"

)

fselect 31

Arguments

fselector (FSelector)
Optimization algorithm.

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to optimize the feature subset for.

resampling (mlr3::Resampling)
Resampling that is used to evaluated the performance of the feature subsets.
Uninstantiated resamplings are instantiated during construction so that all fea-
ture subsets are evaluated on the same data splits. Already instantiated resam-
plings are kept unchanged.

measures (mlr3::Measure or list of mlr3::Measure)
A single measure creates a FSelectInstanceBatchSingleCrit and multiple mea-
sures a FSelectInstanceBatchMultiCrit. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (bbotk::Terminator)
Stop criterion of the feature selection.

store_benchmark_result

(logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

callbacks (list of CallbackBatchFSelect)
List of callbacks.

ties_method (character(1))
The method to break ties when selecting sets while optimizing and when se-
lecting the best set. Can be "least_features" or "random". The option
"least_features" (default) selects the feature set with the least features. If
there are multiple best feature sets with the same number of features, one is se-
lected randomly. The random method returns a random feature set from the best
feature sets. Ignored if multiple measures are used.

Details

The mlr3::Task, mlr3::Learner, mlr3::Resampling, mlr3::Measure and bbotk::Terminator are used
to construct a FSelectInstanceBatchSingleCrit. If multiple performance Measures are supplied, a
FSelectInstanceBatchMultiCrit is created. The parameter term_evals and term_time are shortcuts
to create a bbotk::Terminator. If both parameters are passed, a bbotk::TerminatorCombo is con-
structed. For other Terminators, pass one with terminator. If no termination criterion is needed,
set term_evals, term_time and terminator to NULL.

32 fselect

Value

FSelectInstanceBatchSingleCrit | FSelectInstanceBatchMultiCrit

Resources

There are several sections about feature selection in the mlr3book.

• Getting started with wrapper feature selection.

• Do a sequential forward selection Palmer Penguins data set.

The gallery features a collection of case studies and demos about optimization.

• Utilize the built-in feature importance of models with Recursive Feature Elimination.

• Run a feature selection with Shadow Variable Search.

• Feature Selection on the Titanic data set.

Analysis

For analyzing the feature selection results, it is recommended to pass the archive to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each feature set.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the feature sets again on a different
measure. Alternatively, measures can be supplied to as.data.table().

Examples

Feature selection on the Palmer Penguins data set
task = tsk("pima")
learner = lrn("classif.rpart")

Run feature selection
instance = fselect(

fselector = fs("random_search"),
task = task,
learner = learner,
resampling = rsmp ("holdout"),
measures = msr("classif.ce"),
term_evals = 4)

Subset task to optimized feature set
task$select(instance$result_feature_set)

Train the learner with optimal feature set on the full data set
learner$train(task)

Inspect all evaluated configurations
as.data.table(instance$archive)

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-fs-wrapper
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-fs-wrapper-example
https://mlr-org.com/gallery.html
https://mlr-org.com/gallery/optimization/2023-02-07-recursive-feature-elimination/
https://mlr-org.com/gallery/optimization/2023-02-01-shadow-variable-search/
https://mlr-org.com/gallery/optimization/2020-09-14-mlr3fselect-basic/

FSelectInstanceBatchMultiCrit 33

FSelectInstanceBatchMultiCrit

Class for Multi Criteria Feature Selection

Description

The FSelectInstanceBatchMultiCrit specifies a feature selection problem for a FSelector. The func-
tion fsi() creates a FSelectInstanceBatchMultiCrit and the function fselect() creates an instance
internally.

Resources

There are several sections about feature selection in the mlr3book.

• Learn about multi-objective optimization.

The gallery features a collection of case studies and demos about optimization.

Analysis

For analyzing the feature selection results, it is recommended to pass the archive to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each feature set.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the feature sets again on a different
measure. Alternatively, measures can be supplied to as.data.table().

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceBatch -> bbotk::OptimInstanceBatchMultiCrit
-> FSelectInstanceBatchMultiCrit

Active bindings

result_feature_set (list of character())
Feature sets for task subsetting.

Methods

Public methods:
• FSelectInstanceBatchMultiCrit$new()

• FSelectInstanceBatchMultiCrit$assign_result()

• FSelectInstanceBatchMultiCrit$print()

• FSelectInstanceBatchMultiCrit$clone()

Method new(): Creates a new instance of this R6 class.

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-multicrit-featsel
https://mlr-org.com/gallery.html

34 FSelectInstanceBatchMultiCrit

Usage:
FSelectInstanceBatchMultiCrit$new(
task,
learner,
resampling,
measures,
terminator,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL

)

Arguments:
task (mlr3::Task)

Task to operate on.
learner (mlr3::Learner)

Learner to optimize the feature subset for.
resampling (mlr3::Resampling)

Resampling that is used to evaluated the performance of the feature subsets. Uninstantiated
resamplings are instantiated during construction so that all feature subsets are evaluated on
the same data splits. Already instantiated resamplings are kept unchanged.

measures (list of mlr3::Measure)
Measures to optimize. If NULL, mlr3’s default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the feature selection.

store_benchmark_result (logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?
check_values (logical(1))

Check the parameters before the evaluation and the results for validity?
callbacks (list of CallbackBatchFSelect)

List of callbacks.

Method assign_result(): The FSelector object writes the best found feature subsets and
estimated performance values here. For internal use.

Usage:
FSelectInstanceBatchMultiCrit$assign_result(xdt, ydt)

Arguments:
xdt (data.table::data.table())

x values as data.table. Each row is one point. Contains the value in the search space of
the FSelectInstanceBatchMultiCrit object. Can contain additional columns for extra infor-
mation.

ydt (data.table::data.table())
Optimal outcomes, e.g. the Pareto front.

Method print(): Printer.

https://CRAN.R-project.org/package=mlr3

FSelectInstanceBatchSingleCrit 35

Usage:

FSelectInstanceBatchMultiCrit$print(...)

Arguments:

... (ignored).

Method clone(): The objects of this class are cloneable with this method.

Usage:

FSelectInstanceBatchMultiCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Feature selection on Palmer Penguins data set

task = tsk("penguins")

Construct feature selection instance
instance = fsi(

task = task,
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msrs(c("classif.ce", "time_train")),
terminator = trm("evals", n_evals = 4)

)

Choose optimization algorithm
fselector = fs("random_search", batch_size = 2)

Run feature selection
fselector$optimize(instance)

Optimal feature sets
instance$result_feature_set

Inspect all evaluated sets
as.data.table(instance$archive)

FSelectInstanceBatchSingleCrit

Class for Single Criterion Feature Selection

36 FSelectInstanceBatchSingleCrit

Description

The FSelectInstanceBatchSingleCrit specifies a feature selection problem for a FSelector. The
function fsi() creates a FSelectInstanceBatchSingleCrit and the function fselect() creates an
instance internally.

The instance contains an ObjectiveFSelectBatch object that encodes the black box objective func-
tion a FSelector has to optimize. The instance allows the basic operations of querying the objec-
tive at design points ($eval_batch()). This operation is usually done by the FSelector. Evalua-
tions of feature subsets are performed in batches by calling mlr3::benchmark() internally. The
evaluated feature subsets are stored in the Archive ($archive). Before a batch is evaluated, the
bbotk::Terminator is queried for the remaining budget. If the available budget is exhausted, an ex-
ception is raised, and no further evaluations can be performed from this point on. The FSelector is
also supposed to store its final result, consisting of a selected feature subset and associated estimated
performance values, by calling the method instance$assign_result().

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Resources

There are several sections about feature selection in the mlr3book.

• Getting started with wrapper feature selection.

• Do a sequential forward selection Palmer Penguins data set.

The gallery features a collection of case studies and demos about optimization.

• Utilize the built-in feature importance of models with Recursive Feature Elimination.

• Run a feature selection with Shadow Variable Search.

• Feature Selection on the Titanic data set.

Analysis

For analyzing the feature selection results, it is recommended to pass the archive to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each feature set.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-fs-wrapper
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-fs-wrapper-example
https://mlr-org.com/gallery.html
https://mlr-org.com/gallery/optimization/2023-02-07-recursive-feature-elimination/
https://mlr-org.com/gallery/optimization/2023-02-01-shadow-variable-search/
https://mlr-org.com/gallery/optimization/2020-09-14-mlr3fselect-basic/

FSelectInstanceBatchSingleCrit 37

The benchmark result ($benchmark_result) allows to score the feature sets again on a different
measure. Alternatively, measures can be supplied to as.data.table().

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceBatch -> bbotk::OptimInstanceBatchSingleCrit
-> FSelectInstanceBatchSingleCrit

Active bindings

result_feature_set (character())
Feature set for task subsetting.

Methods

Public methods:

• FSelectInstanceBatchSingleCrit$new()

• FSelectInstanceBatchSingleCrit$assign_result()

• FSelectInstanceBatchSingleCrit$print()

• FSelectInstanceBatchSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectInstanceBatchSingleCrit$new(
task,
learner,
resampling,
measure,
terminator,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
ties_method = "least_features"

)

Arguments:

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to optimize the feature subset for.

resampling (mlr3::Resampling)
Resampling that is used to evaluated the performance of the feature subsets. Uninstantiated
resamplings are instantiated during construction so that all feature subsets are evaluated on
the same data splits. Already instantiated resamplings are kept unchanged.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

38 FSelectInstanceBatchSingleCrit

terminator (bbotk::Terminator)
Stop criterion of the feature selection.

store_benchmark_result (logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?
check_values (logical(1))

Check the parameters before the evaluation and the results for validity?
callbacks (list of CallbackBatchFSelect)

List of callbacks.
ties_method (character(1))

The method to break ties when selecting sets while optimizing and when selecting the best
set. Can be "least_features" or "random". The option "least_features" (default)
selects the feature set with the least features. If there are multiple best feature sets with the
same number of features, one is selected randomly. The random method returns a random
feature set from the best feature sets. Ignored if multiple measures are used.

Method assign_result(): The FSelector writes the best found feature subset and estimated
performance value here. For internal use.

Usage:
FSelectInstanceBatchSingleCrit$assign_result(xdt, y)

Arguments:

xdt (data.table::data.table())
x values as data.table. Each row is one point. Contains the value in the search space of
the FSelectInstanceBatchMultiCrit object. Can contain additional columns for extra infor-
mation.

y (numeric(1))
Optimal outcome.

Method print(): Printer.

Usage:
FSelectInstanceBatchSingleCrit$print(...)

Arguments:

... (ignored).

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectInstanceBatchSingleCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Feature selection on Palmer Penguins data set

FSelector 39

task = tsk("penguins")
learner = lrn("classif.rpart")

Construct feature selection instance
instance = fsi(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

Choose optimization algorithm
fselector = fs("random_search", batch_size = 2)

Run feature selection
fselector$optimize(instance)

Subset task to optimal feature set
task$select(instance$result_feature_set)

Train the learner with optimal feature set on the full data set
learner$train(task)

Inspect all evaluated sets
as.data.table(instance$archive)

FSelector FSelector

Description

The ‘FSelector“ implements the optimization algorithm.

Details

FSelector is an abstract base class that implements the base functionality each fselector must
provide.

Resources

There are several sections about feature selection in the mlr3book.

• Learn more about fselectors.

The gallery features a collection of case studies and demos about optimization.

• Utilize the built-in feature importance of models with Recursive Feature Elimination.

• Run a feature selection with Shadow Variable Search.

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#the-fselector-class
https://mlr-org.com/gallery.html
https://mlr-org.com/gallery/optimization/2023-02-07-recursive-feature-elimination/
https://mlr-org.com/gallery/optimization/2023-02-01-shadow-variable-search/

40 FSelector

Public fields

id (character(1))
Identifier of the object. Used in tables, plot and text output.

Active bindings

param_set paradox::ParamSet
Set of control parameters.

properties (character())
Set of properties of the fselector. Must be a subset of mlr_reflections$fselect_properties.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Methods

Public methods:
• FSelector$new()

• FSelector$format()

• FSelector$print()

• FSelector$help()

• FSelector$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelector$new(
id = "fselector",
param_set,
properties,
packages = character(),
label = NA_character_,
man = NA_character_

)

Arguments:

id (character(1))
Identifier for the new instance.

param_set paradox::ParamSet
Set of control parameters.

properties (character())
Set of properties of the fselector. Must be a subset of mlr_reflections$fselect_properties.

FSelector 41

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method format(): Helper for print outputs.

Usage:

FSelector$format(...)

Arguments:

... (ignored).

Returns: (character()).

Method print(): Print method.

Usage:

FSelector$print()

Returns: (character()).

Method help(): Opens the corresponding help page referenced by field $man.

Usage:

FSelector$help()

Method clone(): The objects of this class are cloneable with this method.

Usage:

FSelector$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other FSelector: mlr_fselectors, mlr_fselectors_design_points, mlr_fselectors_exhaustive_search,
mlr_fselectors_genetic_search, mlr_fselectors_random_search, mlr_fselectors_rfe, mlr_fselectors_rfecv,
mlr_fselectors_sequential, mlr_fselectors_shadow_variable_search

42 FSelectorBatch

FSelectorBatch Class for Batch Feature Selection Algorithms

Description

The FSelectorBatch implements the optimization algorithm.

Details

FSelectorBatch is an abstract base class that implements the base functionality each fselector must
provide. A subclass is implemented in the following way:

• Inherit from FSelectorBatch.

• Specify the private abstract method $.optimize() and use it to call into your optimizer.

• You need to call instance$eval_batch() to evaluate design points.

• The batch evaluation is requested at the FSelectInstanceBatchSingleCrit/FSelectInstanceBatchMultiCrit
object instance, so each batch is possibly executed in parallel via mlr3::benchmark(), and
all evaluations are stored inside of instance$archive.

• Before the batch evaluation, the bbotk::Terminator is checked, and if it is positive, an exception
of class "terminated_error" is generated. In the latter case the current batch of evaluations
is still stored in instance, but the numeric scores are not sent back to the handling optimizer
as it has lost execution control.

• After such an exception was caught we select the best set from instance$archive and return
it.

• Note that therefore more points than specified by the bbotk::Terminator may be evaluated, as
the Terminator is only checked before a batch evaluation, and not in-between evaluation in a
batch. How many more depends on the setting of the batch size.

• Overwrite the private super-method .assign_result() if you want to decide how to estimate
the final set in the instance and its estimated performance. The default behavior is: We pick
the best resample experiment, regarding the given measure, then assign its set and aggregated
performance to the instance.

Private Methods

• .optimize(instance) -> NULL
Abstract base method. Implement to specify feature selection of your subclass. See technical
details sections.

• .assign_result(instance) -> NULL
Abstract base method. Implement to specify how the final feature subset is selected. See
technical details sections.

FSelectorBatch 43

Resources

There are several sections about feature selection in the mlr3book.

• Learn more about fselectors.

The gallery features a collection of case studies and demos about optimization.

• Utilize the built-in feature importance of models with Recursive Feature Elimination.

• Run a feature selection with Shadow Variable Search.

Super class

mlr3fselect::FSelector -> FSelectorBatch

Methods

Public methods:

• FSelectorBatch$new()

• FSelectorBatch$optimize()

• FSelectorBatch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectorBatch$new(
id = "fselector_batch",
param_set,
properties,
packages = character(),
label = NA_character_,
man = NA_character_

)

Arguments:

id (character(1))
Identifier for the new instance.

param_set paradox::ParamSet
Set of control parameters.

properties (character())
Set of properties of the fselector. Must be a subset of mlr_reflections$fselect_properties.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#the-fselector-class
https://mlr-org.com/gallery.html
https://mlr-org.com/gallery/optimization/2023-02-07-recursive-feature-elimination/
https://mlr-org.com/gallery/optimization/2023-02-01-shadow-variable-search/

44 fselect_nested

Method optimize(): Performs the feature selection on a FSelectInstanceBatchSingleCrit or
FSelectInstanceBatchMultiCrit until termination. The single evaluations will be written into the
ArchiveBatchFSelect that resides in the FSelectInstanceBatchSingleCrit / FSelectInstanceBatch-
MultiCrit. The result will be written into the instance object.

Usage:
FSelectorBatch$optimize(inst)

Arguments:

inst (FSelectInstanceBatchSingleCrit | FSelectInstanceBatchMultiCrit).

Returns: data.table::data.table().

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

fselect_nested Function for Nested Resampling

Description

Function to conduct nested resampling.

Usage

fselect_nested(
fselector,
task,
learner,
inner_resampling,
outer_resampling,
measure = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
store_fselect_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
ties_method = "least_features"

)

fselect_nested 45

Arguments

fselector (FSelector)
Optimization algorithm.

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to optimize the feature subset for.

inner_resampling

(mlr3::Resampling)
Resampling used for the inner loop.

outer_resampling

mlr3::Resampling)
Resampling used for the outer loop.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (bbotk::Terminator)
Stop criterion of the feature selection.

store_fselect_instance

(logical(1))
If TRUE (default), stores the internally created FSelectInstanceBatchSingleCrit
with all intermediate results in slot $fselect_instance. Is set to TRUE, if
store_models = TRUE

store_benchmark_result

(logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

callbacks (list of CallbackBatchFSelect)
List of callbacks.

ties_method (character(1))
The method to break ties when selecting sets while optimizing and when se-
lecting the best set. Can be "least_features" or "random". The option
"least_features" (default) selects the feature set with the least features. If
there are multiple best feature sets with the same number of features, one is se-
lected randomly. The random method returns a random feature set from the best
feature sets. Ignored if multiple measures are used.

Value

mlr3::ResampleResult

46 fsi

Examples

Nested resampling on Palmer Penguins data set
rr = fselect_nested(

fselector = fs("random_search"),
task = tsk("penguins"),
learner = lrn("classif.rpart"),
inner_resampling = rsmp ("holdout"),
outer_resampling = rsmp("cv", folds = 2),
measure = msr("classif.ce"),
term_evals = 4)

Performance scores estimated on the outer resampling
rr$score()

Unbiased performance of the final model trained on the full data set
rr$aggregate()

fsi Syntactic Sugar for Instance Construction

Description

Function to construct a FSelectInstanceBatchSingleCrit or FSelectInstanceBatchMultiCrit.

Usage

fsi(
task,
learner,
resampling,
measures = NULL,
terminator,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
ties_method = "least_features"

)

Arguments

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to optimize the feature subset for.

fsi 47

resampling (mlr3::Resampling)
Resampling that is used to evaluated the performance of the feature subsets.
Uninstantiated resamplings are instantiated during construction so that all fea-
ture subsets are evaluated on the same data splits. Already instantiated resam-
plings are kept unchanged.

measures (mlr3::Measure or list of mlr3::Measure)
A single measure creates a FSelectInstanceBatchSingleCrit and multiple mea-
sures a FSelectInstanceBatchMultiCrit. If NULL, default measure is used.

terminator (bbotk::Terminator)
Stop criterion of the feature selection.

store_benchmark_result

(logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

callbacks (list of CallbackBatchFSelect)
List of callbacks.

ties_method (character(1))
The method to break ties when selecting sets while optimizing and when se-
lecting the best set. Can be "least_features" or "random". The option
"least_features" (default) selects the feature set with the least features. If
there are multiple best feature sets with the same number of features, one is se-
lected randomly. The random method returns a random feature set from the best
feature sets. Ignored if multiple measures are used.

Resources

There are several sections about feature selection in the mlr3book.

• Getting started with wrapper feature selection.

• Do a sequential forward selection Palmer Penguins data set.

The gallery features a collection of case studies and demos about optimization.

• Utilize the built-in feature importance of models with Recursive Feature Elimination.

• Run a feature selection with Shadow Variable Search.

• Feature Selection on the Titanic data set.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-fs-wrapper
https://mlr3book.mlr-org.com/chapters/chapter6/feature_selection.html#sec-fs-wrapper-example
https://mlr-org.com/gallery.html
https://mlr-org.com/gallery/optimization/2023-02-07-recursive-feature-elimination/
https://mlr-org.com/gallery/optimization/2023-02-01-shadow-variable-search/
https://mlr-org.com/gallery/optimization/2020-09-14-mlr3fselect-basic/
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba

48 mlr3fselect.backup

"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Examples

Feature selection on Palmer Penguins data set

task = tsk("penguins")
learner = lrn("classif.rpart")

Construct feature selection instance
instance = fsi(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

Choose optimization algorithm
fselector = fs("random_search", batch_size = 2)

Run feature selection
fselector$optimize(instance)

Subset task to optimal feature set
task$select(instance$result_feature_set)

Train the learner with optimal feature set on the full data set
learner$train(task)

Inspect all evaluated sets
as.data.table(instance$archive)

mlr3fselect.backup Backup Benchmark Result Callback

Description

This CallbackBatchFSelect writes the mlr3::BenchmarkResult after each batch to disk.

Examples

clbk("mlr3fselect.backup", path = "backup.rds")

https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster

mlr3fselect.one_se_rule 49

Run feature selection on the Palmer Penguins data set
instance = fselect(

fselector = fs("random_search"),
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp ("holdout"),
measures = msr("classif.ce"),
term_evals = 4,
callbacks = clbk("mlr3fselect.backup", path = tempfile(fileext = ".rds")))

mlr3fselect.one_se_rule

One Standard Error Rule Callback

Description

Selects the smallest feature set within one standard error of the best as the result. If there are
multiple such feature sets with the same number of features, the first one is selected. If the sets have
exactly the same performance but different number of features, the one with the smallest number of
features is selected.

Source

Kuhn, Max, Johnson, Kjell (2013). “Applied Predictive Modeling.” In chapter Over-Fitting and
Model Tuning, 61–92. Springer New York, New York, NY. ISBN 978-1-4614-6849-3.

Examples

clbk("mlr3fselect.one_se_rule")

Run feature selection on the pima data set with the callback
instance = fselect(

fselector = fs("random_search"),
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp ("cv", folds = 3),
measures = msr("classif.ce"),
term_evals = 10,
callbacks = clbk("mlr3fselect.one_se_rule"))

Smallest feature set within one standard error of the best
instance$result

50 mlr_fselectors

mlr3fselect.svm_rfe SVM-RFE Callback

Description

Runs a recursive feature elimination with a mlr3learners::LearnerClassifSVM. The SVM must be
configured with type = "C-classification" and kernel = "linear".

Source

Guyon I, Weston J, Barnhill S, Vapnik V (2002). “Gene Selection for Cancer Classification using
Support Vector Machines.” Machine Learning, 46(1), 389–422. ISSN 1573-0565, doi:10.1023/
A:1012487302797.

Examples

clbk("mlr3fselect.svm_rfe")

library(mlr3learners)

Create instance with classification svm with linear kernel
instance = fsi(

task = tsk("sonar"),
learner = lrn("classif.svm", type = "C-classification", kernel = "linear"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("none"),
callbacks = clbk("mlr3fselect.svm_rfe"),
store_models = TRUE

)

fselector = fs("rfe", feature_number = 5, n_features = 10)

Run recursive feature elimination on the Sonar data set
fselector$optimize(instance)

mlr_fselectors Dictionary of FSelectors

Description

A mlr3misc::Dictionary storing objects of class FSelector. Each fselector has an associated help
page, see mlr_fselectors_[id].

For a more convenient way to retrieve and construct fselectors, see fs()/fss().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

https://doi.org/10.1023/A%3A1012487302797
https://doi.org/10.1023/A%3A1012487302797

mlr_fselectors_design_points 51

Methods

See mlr3misc::Dictionary.

S3 methods

• as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data.table::data.table()
Returns a data.table::data.table() with fields "key", "label", "properties" and "pack-
ages" as columns. If objects is set to TRUE, the constructed objects are returned in the list
column named object.

See Also

Sugar functions: fs(), fss()

Other FSelector: FSelector, mlr_fselectors_design_points, mlr_fselectors_exhaustive_search,
mlr_fselectors_genetic_search, mlr_fselectors_random_search, mlr_fselectors_rfe, mlr_fselectors_rfecv,
mlr_fselectors_sequential, mlr_fselectors_shadow_variable_search

Examples

as.data.table(mlr_fselectors)
mlr_fselectors$get("random_search")
fs("random_search")

mlr_fselectors_design_points

Feature Selection with Design Points

Description

Feature selection using user-defined feature sets.

Details

The feature sets are evaluated in order as given.

The feature selection terminates itself when all feature sets are evaluated. It is not necessary to set
a termination criterion.

Dictionary

This FSelector can be instantiated with the associated sugar function fs():

fs("design_points")

52 mlr_fselectors_design_points

Parameters

batch_size integer(1)
Maximum number of configurations to try in a batch.

design data.table::data.table
Design points to try in search, one per row.

Super classes

mlr3fselect::FSelector -> mlr3fselect::FSelectorBatch -> mlr3fselect::FSelectorBatchFromOptimizerBatch
-> FSelectorBatchDesignPoints

Methods

Public methods:
• FSelectorBatchDesignPoints$new()

• FSelectorBatchDesignPoints$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectorBatchDesignPoints$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatchDesignPoints$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other FSelector: FSelector, mlr_fselectors, mlr_fselectors_exhaustive_search, mlr_fselectors_genetic_search,
mlr_fselectors_random_search, mlr_fselectors_rfe, mlr_fselectors_rfecv, mlr_fselectors_sequential,
mlr_fselectors_shadow_variable_search

Examples

Feature Selection

retrieve task and load learner
task = tsk("pima")
learner = lrn("classif.rpart")

create design
design = mlr3misc::rowwise_table(

~age, ~glucose, ~insulin, ~mass, ~pedigree, ~pregnant, ~pressure, ~triceps,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE,
TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE,

mlr_fselectors_exhaustive_search 53

TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE
)

run feature selection on the Pima Indians diabetes data set
instance = fselect(

fselector = fs("design_points", design = design),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce")

)

best performing feature set
instance$result

all evaluated feature sets
as.data.table(instance$archive)

subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)

mlr_fselectors_exhaustive_search

Feature Selection with Exhaustive Search

Description

Feature Selection using the Exhaustive Search Algorithm. Exhaustive Search generates all possible
feature sets.

Details

The feature selection terminates itself when all feature sets are evaluated. It is not necessary to set
a termination criterion.

Dictionary

This FSelector can be instantiated with the associated sugar function fs():

fs("exhaustive_search")

Control Parameters

max_features integer(1)
Maximum number of features. By default, number of features in mlr3::Task.

54 mlr_fselectors_exhaustive_search

Super classes

mlr3fselect::FSelector -> mlr3fselect::FSelectorBatch -> FSelectorBatchExhaustiveSearch

Methods

Public methods:
• FSelectorBatchExhaustiveSearch$new()

• FSelectorBatchExhaustiveSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectorBatchExhaustiveSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatchExhaustiveSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other FSelector: FSelector, mlr_fselectors, mlr_fselectors_design_points, mlr_fselectors_genetic_search,
mlr_fselectors_random_search, mlr_fselectors_rfe, mlr_fselectors_rfecv, mlr_fselectors_sequential,
mlr_fselectors_shadow_variable_search

Examples

Feature Selection

retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")

run feature selection on the Palmer Penguins data set
instance = fselect(

fselector = fs("exhaustive_search"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

best performing feature set
instance$result

all evaluated feature sets
as.data.table(instance$archive)

mlr_fselectors_genetic_search 55

subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)

mlr_fselectors_genetic_search

Feature Selection with Genetic Search

Description

Feature selection using the Genetic Algorithm from the package genalg.

Dictionary

This FSelector can be instantiated with the associated sugar function fs():

fs("genetic_search")

Control Parameters

For the meaning of the control parameters, see genalg::rbga.bin(). genalg::rbga.bin() in-
ternally terminates after iters iteration. We set ìters = 100000 to allow the termination via our
terminators. If more iterations are needed, set ìters to a higher value in the parameter set.

Super classes

mlr3fselect::FSelector -> mlr3fselect::FSelectorBatch -> FSelectorBatchGeneticSearch

Methods

Public methods:

• FSelectorBatchGeneticSearch$new()

• FSelectorBatchGeneticSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectorBatchGeneticSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatchGeneticSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://CRAN.R-project.org/package=genalg

56 mlr_fselectors_random_search

See Also

Other FSelector: FSelector, mlr_fselectors, mlr_fselectors_design_points, mlr_fselectors_exhaustive_search,
mlr_fselectors_random_search, mlr_fselectors_rfe, mlr_fselectors_rfecv, mlr_fselectors_sequential,
mlr_fselectors_shadow_variable_search

Examples

Feature Selection

retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")

run feature selection on the Palmer Penguins data set
instance = fselect(

fselector = fs("genetic_search"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

best performing feature set
instance$result

all evaluated feature sets
as.data.table(instance$archive)

subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)

mlr_fselectors_random_search

Feature Selection with Random Search

Description

Feature selection using Random Search Algorithm.

Details

The feature sets are randomly drawn. The sets are evaluated in batches of size batch_size. Larger
batches mean we can parallelize more, smaller batches imply a more fine-grained checking of ter-
mination criteria.

mlr_fselectors_random_search 57

Dictionary

This FSelector can be instantiated with the associated sugar function fs():

fs("random_search")

Control Parameters

max_features integer(1)
Maximum number of features. By default, number of features in mlr3::Task.

batch_size integer(1)
Maximum number of feature sets to try in a batch.

Super classes

mlr3fselect::FSelector -> mlr3fselect::FSelectorBatch -> FSelectorBatchRandomSearch

Methods

Public methods:

• FSelectorBatchRandomSearch$new()

• FSelectorBatchRandomSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectorBatchRandomSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatchRandomSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Ma-
chine Learning Research, 13(10), 281–305. https://jmlr.csail.mit.edu/papers/v13/bergstra12a.
html.

See Also

Other FSelector: FSelector, mlr_fselectors, mlr_fselectors_design_points, mlr_fselectors_exhaustive_search,
mlr_fselectors_genetic_search, mlr_fselectors_rfe, mlr_fselectors_rfecv, mlr_fselectors_sequential,
mlr_fselectors_shadow_variable_search

https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html

58 mlr_fselectors_rfe

Examples

Feature Selection

retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")

run feature selection on the Palmer Penguins data set
instance = fselect(

fselector = fs("random_search"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

best performing feature subset
instance$result

all evaluated feature subsets
as.data.table(instance$archive)

subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)

mlr_fselectors_rfe Feature Selection with Recursive Feature Elimination

Description

Feature selection using the Recursive Feature Elimination (RFE) algorithm. Recursive feature elim-
ination iteratively removes features with a low importance score. Only works with mlr3::Learners
that can calculate importance scores (see the section on optional extractors in mlr3::Learner).

Details

The learner is trained on all features at the start and importance scores are calculated for each
feature. Then the least important feature is removed and the learner is trained on the reduced
feature set. The importance scores are calculated again and the procedure is repeated until the
desired number of features is reached. The non-recursive option (recursive = FALSE) only uses
the importance scores calculated in the first iteration.

The feature selection terminates itself when n_features is reached. It is not necessary to set a
termination criterion.

When using a cross-validation resampling strategy, the importance scores of the resampling it-
erations are aggregated. The parameter aggregation determines how the importance scores are

mlr_fselectors_rfe 59

aggregated. By default ("rank"), the importance score vector of each fold is ranked and the feature
with the lowest average rank is removed. The option "mean" averages the score of each feature
across the resampling iterations and removes the feature with the lowest average score. Averaging
the scores is not appropriate for most importance measures.

Archive

The ArchiveBatchFSelect holds the following additional columns:

• "importance" (numeric())
The importance score vector of the feature subset.

Resources

The gallery features a collection of case studies and demos about optimization.

• Utilize the built-in feature importance of models with Recursive Feature Elimination.

Dictionary

This FSelector can be instantiated with the associated sugar function fs():

fs("rfe")

Control Parameters

n_features integer(1)
The minimum number of features to select, by default half of the features.

feature_fraction double(1)
Fraction of features to retain in each iteration. The default of 0.5 retains half of the features.

feature_number integer(1)
Number of features to remove in each iteration.

subset_sizes integer()
Vector of the number of features to retain in each iteration. Must be sorted in decreasing order.

recursive logical(1)
If TRUE (default), the feature importance is calculated in each iteration.

aggregation character(1)
The aggregation method for the importance scores of the resampling iterations. See details.

The parameter feature_fraction, feature_number and subset_sizes are mutually exclusive.

Super classes

mlr3fselect::FSelector -> mlr3fselect::FSelectorBatch -> FSelectorBatchRFE

https://mlr-org.com/gallery.html
https://mlr-org.com/gallery/optimization/2023-02-07-recursive-feature-elimination/

60 mlr_fselectors_rfe

Methods

Public methods:
• FSelectorBatchRFE$new()

• FSelectorBatchRFE$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectorBatchRFE$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatchRFE$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Guyon I, Weston J, Barnhill S, Vapnik V (2002). “Gene Selection for Cancer Classification using
Support Vector Machines.” Machine Learning, 46(1), 389–422. ISSN 1573-0565, doi:10.1023/
A:1012487302797.

See Also

Other FSelector: FSelector, mlr_fselectors, mlr_fselectors_design_points, mlr_fselectors_exhaustive_search,
mlr_fselectors_genetic_search, mlr_fselectors_random_search, mlr_fselectors_rfecv,
mlr_fselectors_sequential, mlr_fselectors_shadow_variable_search

Examples

Feature Selection

retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")

run feature selection on the Palmer Penguins data set
instance = fselect(

fselector = fs("rfe"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
store_models = TRUE

)

best performing feature subset
instance$result

https://doi.org/10.1023/A%3A1012487302797
https://doi.org/10.1023/A%3A1012487302797

mlr_fselectors_rfecv 61

all evaluated feature subsets
as.data.table(instance$archive)

subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)

mlr_fselectors_rfecv Feature Selection with Recursive Feature Elimination with Cross Val-
idation

Description

Feature selection using the Recursive Feature Elimination with Cross-Validation (RFE-CV) algo-
rithm. See FSelectorBatchRFE for a description of the base algorithm. RFE-CV runs a recursive
feature elimination in each iteration of a cross-validation to determine the optimal number of fea-
tures. Then a recursive feature elimination is run again on the complete dataset with the optimal
number of features as the final feature set size. The performance of the optimal feature set is cal-
culated on the complete data set and should not be reported as the performance of the final model.
Only works with mlr3::Learners that can calculate importance scores (see the section on optional
extractors in mlr3::Learner).

Details

The resampling strategy is changed during the feature selection. The resampling strategy passed to
the instance (resampling) is used to determine the optimal number of features. Usually, a cross-
validation strategy is used and a recursive feature elimination is run in each iteration of the cross-
validation. Internally, mlr3::ResamplingCustom is used to emulate this part of the algorithm. In the
final recursive feature elimination run the resampling strategy is changed to mlr3::ResamplingInsample
i.e. the complete data set is used for training and testing.

The feature selection terminates itself when the optimal number of features is reached. It is not
necessary to set a termination criterion.

Archive

The ArchiveBatchFSelect holds the following additional columns:

• "iteration" (integer(1))
The resampling iteration in which the feature subset was evaluated.

• "importance" (numeric())
The importance score vector of the feature subset.

Resources

The gallery features a collection of case studies and demos about optimization.

• Utilize the built-in feature importance of models with Recursive Feature Elimination.

https://mlr-org.com/gallery.html
https://mlr-org.com/gallery/optimization/2023-02-07-recursive-feature-elimination/

62 mlr_fselectors_rfecv

Dictionary

This FSelector can be instantiated with the associated sugar function fs():

fs("rfe")

Control Parameters

n_features integer(1)
The number of features to select. By default half of the features are selected.

feature_fraction double(1)
Fraction of features to retain in each iteration. The default 0.5 retrains half of the features.

feature_number integer(1)
Number of features to remove in each iteration.

subset_sizes integer()
Vector of number of features to retain in each iteration. Must be sorted in decreasing order.

recursive logical(1)
If TRUE (default), the feature importance is calculated in each iteration.

The parameter feature_fraction, feature_number and subset_sizes are mutually exclusive.

Super classes

mlr3fselect::FSelector -> mlr3fselect::FSelectorBatch -> FSelectorBatchRFECV

Methods

Public methods:

• FSelectorBatchRFECV$new()

• FSelectorBatchRFECV$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectorBatchRFECV$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatchRFECV$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other FSelector: FSelector, mlr_fselectors, mlr_fselectors_design_points, mlr_fselectors_exhaustive_search,
mlr_fselectors_genetic_search, mlr_fselectors_random_search, mlr_fselectors_rfe, mlr_fselectors_sequential,
mlr_fselectors_shadow_variable_search

mlr_fselectors_sequential 63

Examples

Feature Selection

retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")

run feature selection on the Palmer Penguins data set
instance = fselect(

fselector = fs("rfecv"),
task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
store_models = TRUE

)

best performing feature subset
instance$result

all evaluated feature subsets
as.data.table(instance$archive)

subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)

mlr_fselectors_sequential

Feature Selection with Sequential Search

Description

Feature selection using Sequential Search Algorithm.

Details

Sequential forward selection (strategy = fsf) extends the feature set in each iteration with the
feature that increases the model’s performance the most. Sequential backward selection (strategy
= fsb) follows the same idea but starts with all features and removes features from the set.

The feature selection terminates itself when min_features or max_features is reached. It is not
necessary to set a termination criterion.

Dictionary

This FSelector can be instantiated with the associated sugar function fs():

fs("sequential")

64 mlr_fselectors_sequential

Control Parameters

min_features integer(1)
Minimum number of features. By default, 1.

max_features integer(1)
Maximum number of features. By default, number of features in mlr3::Task.

strategy character(1)
Search method sfs (forward search) or sbs (backward search).

Super classes

mlr3fselect::FSelector -> mlr3fselect::FSelectorBatch -> FSelectorBatchSequential

Methods

Public methods:
• FSelectorBatchSequential$new()

• FSelectorBatchSequential$optimization_path()

• FSelectorBatchSequential$clone()

Method new(): Creates a new instance of this R6 class.‘

Usage:
FSelectorBatchSequential$new()

Method optimization_path(): Returns the optimization path.

Usage:
FSelectorBatchSequential$optimization_path(inst, include_uhash = FALSE)

Arguments:

inst (FSelectInstanceBatchSingleCrit)
Instance optimized with FSelectorBatchSequential.

include_uhash (logical(1))
Include uhash column?

Returns: data.table::data.table()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatchSequential$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other FSelector: FSelector, mlr_fselectors, mlr_fselectors_design_points, mlr_fselectors_exhaustive_search,
mlr_fselectors_genetic_search, mlr_fselectors_random_search, mlr_fselectors_rfe, mlr_fselectors_rfecv,
mlr_fselectors_shadow_variable_search

mlr_fselectors_shadow_variable_search 65

Examples

Feature Selection

retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")

run feature selection on the Palmer Penguins data set
instance = fselect(

fselector = fs("sequential"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

best performing feature set
instance$result

all evaluated feature sets
as.data.table(instance$archive)

subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)

mlr_fselectors_shadow_variable_search

Feature Selection with Shadow Variable Search

Description

Feature selection using the Shadow Variable Search Algorithm. Shadow variable search creates for
each feature a permutated copy and stops when one of them is selected.

Details

The feature selection terminates itself when the first shadow variable is selected. It is not necessary
to set a termination criterion.

Resources

The gallery features a collection of case studies and demos about optimization.

• Run a feature selection with Shadow Variable Search.

https://mlr-org.com/gallery.html
https://mlr-org.com/gallery/optimization/2023-02-01-shadow-variable-search/

66 mlr_fselectors_shadow_variable_search

Dictionary

This FSelector can be instantiated with the associated sugar function fs():

fs("shadow_variable_search")

Super classes

mlr3fselect::FSelector -> mlr3fselect::FSelectorBatch -> FSelectorBatchShadowVariableSearch

Methods

Public methods:

• FSelectorBatchShadowVariableSearch$new()

• FSelectorBatchShadowVariableSearch$optimization_path()

• FSelectorBatchShadowVariableSearch$clone()

Method new(): Creates a new instance of this R6 class.‘

Usage:
FSelectorBatchShadowVariableSearch$new()

Method optimization_path(): Returns the optimization path.

Usage:
FSelectorBatchShadowVariableSearch$optimization_path(inst)

Arguments:

inst (FSelectInstanceBatchSingleCrit)
Instance optimized with FSelectorBatchShadowVariableSearch.

Returns: data.table::data.table

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorBatchShadowVariableSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Thomas J, Hepp T, Mayr A, Bischl B (2017). “Probing for Sparse and Fast Variable Selection
with Model-Based Boosting.” Computational and Mathematical Methods in Medicine, 2017, 1–8.
doi:10.1155/2017/1421409.

Wu Y, Boos DD, Stefanski LA (2007). “Controlling Variable Selection by the Addition of Pseu-
dovariables.” Journal of the American Statistical Association, 102(477), 235–243. doi:10.1198/
016214506000000843.

https://doi.org/10.1155/2017/1421409
https://doi.org/10.1198/016214506000000843
https://doi.org/10.1198/016214506000000843

ObjectiveFSelect 67

See Also

Other FSelector: FSelector, mlr_fselectors, mlr_fselectors_design_points, mlr_fselectors_exhaustive_search,
mlr_fselectors_genetic_search, mlr_fselectors_random_search, mlr_fselectors_rfe, mlr_fselectors_rfecv,
mlr_fselectors_sequential

Examples

Feature Selection

retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")

run feature selection on the Palmer Penguins data set
instance = fselect(

fselector = fs("shadow_variable_search"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),

)

best performing feature subset
instance$result

all evaluated feature subsets
as.data.table(instance$archive)

subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)

ObjectiveFSelect Class for Feature Selection Objective

Description

Stores the objective function that estimates the performance of feature subsets. This class is usually
constructed internally by the FSelectInstanceBatchSingleCrit / FSelectInstanceBatchMultiCrit.

Super class

bbotk::Objective -> ObjectiveFSelect

68 ObjectiveFSelect

Public fields

task (mlr3::Task).

learner (mlr3::Learner).

resampling (mlr3::Resampling).

measures (list of mlr3::Measure).

store_models (logical(1)).

store_benchmark_result (logical(1)).

callbacks (List of CallbackBatchFSelects).

Methods

Public methods:

• ObjectiveFSelect$new()

• ObjectiveFSelect$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ObjectiveFSelect$new(
task,
learner,
resampling,
measures,
check_values = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
callbacks = NULL

)

Arguments:

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to optimize the feature subset for.

resampling (mlr3::Resampling)
Resampling that is used to evaluated the performance of the feature subsets. Uninstantiated
resamplings are instantiated during construction so that all feature subsets are evaluated on
the same data splits. Already instantiated resamplings are kept unchanged.

measures (list of mlr3::Measure)
Measures to optimize. If NULL, mlr3’s default measure is used.

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

store_benchmark_result (logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?

https://CRAN.R-project.org/package=mlr3

ObjectiveFSelectBatch 69

callbacks (list of CallbackBatchFSelect)
List of callbacks.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ObjectiveFSelect$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ObjectiveFSelectBatch Class for Feature Selection Objective

Description

Stores the objective function that estimates the performance of feature subsets. This class is usually
constructed internally by the FSelectInstanceBatchSingleCrit / FSelectInstanceBatchMultiCrit.

Super classes

bbotk::Objective -> mlr3fselect::ObjectiveFSelect -> ObjectiveFSelectBatch

Public fields

archive (ArchiveBatchFSelect).

Methods

Public methods:
• ObjectiveFSelectBatch$new()

• ObjectiveFSelectBatch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ObjectiveFSelectBatch$new(
task,
learner,
resampling,
measures,
check_values = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
archive = NULL,
callbacks = NULL

)

Arguments:

70 ObjectiveFSelectBatch

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to optimize the feature subset for.

resampling (mlr3::Resampling)
Resampling that is used to evaluated the performance of the feature subsets. Uninstantiated
resamplings are instantiated during construction so that all feature subsets are evaluated on
the same data splits. Already instantiated resamplings are kept unchanged.

measures (list of mlr3::Measure)
Measures to optimize. If NULL, mlr3’s default measure is used.

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

store_benchmark_result (logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?
archive (ArchiveBatchFSelect)

Reference to the archive of FSelectInstanceBatchSingleCrit | FSelectInstanceBatchMulti-
Crit. If NULL (default), benchmark result and models cannot be stored.

callbacks (list of CallbackBatchFSelect)
List of callbacks.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ObjectiveFSelectBatch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://CRAN.R-project.org/package=mlr3

Index

∗ Dictionary
mlr_fselectors, 50

∗ FSelector
FSelector, 39
mlr_fselectors, 50
mlr_fselectors_design_points, 51
mlr_fselectors_exhaustive_search,

53
mlr_fselectors_genetic_search, 55
mlr_fselectors_random_search, 56
mlr_fselectors_rfe, 58
mlr_fselectors_rfecv, 61
mlr_fselectors_sequential, 63
mlr_fselectors_shadow_variable_search,

65
∗ datasets

mlr_fselectors, 50

Archive, 36
ArchiveBatchFSelect, 4, 4, 5, 30, 44, 59, 61,

69, 70
auto_fselector, 12, 21
auto_fselector(), 8, 13
AutoFSelector, 8, 8, 13, 14, 26, 28

bbotk::Archive, 5
bbotk::ArchiveBatch, 5
bbotk::CallbackBatch, 16
bbotk::Codomain, 6
bbotk::ContextBatch, 17, 19
bbotk::Objective, 67, 69
bbotk::OptimInstance, 33, 37
bbotk::OptimInstanceBatch, 33, 37
bbotk::OptimInstanceBatchMultiCrit, 33
bbotk::OptimInstanceBatchSingleCrit,

37
bbotk::Terminator, 8, 10, 13, 14, 21, 29, 31,

34, 36, 38, 42, 45, 47
bbotk::TerminatorCombo, 31

callback_batch_fselect, 17
callback_batch_fselect(), 16, 19
CallbackBatchFSelect, 10, 14, 16, 16, 17,

19, 21, 31, 34, 38, 45, 47, 48, 68–70
character(), 23
clbk(), 16, 17
ContextBatchFSelect, 17–19, 19

data.table::data.table, 9, 19, 22–25, 52,
66

data.table::data.table(), 4–7, 22, 26–28,
44, 51, 64

dictionary, 16, 17, 30

ensemble_fs_result, 22
ensemble_fselect, 20
ensemble_fselect(), 22
EnsembleFSResult, 20–22
EnsembleFSResult (ensemble_fs_result),

22
extract_inner_fselect_archives, 26
extract_inner_fselect_results, 28

fs, 29
fs(), 50, 51, 53, 55, 57, 59, 62, 63, 66
fselect, 30
fselect(), 33, 36
fselect_nested, 44
FSelectInstanceBatchMultiCrit, 6, 30–33,

33, 34, 38, 42, 44, 46, 47, 67, 69, 70
FSelectInstanceBatchSingleCrit, 9, 10,

13, 30–32, 35, 36, 42, 44–47, 64, 66,
67, 69, 70

FSelector, 8–10, 13, 14, 20, 21, 29–31, 33,
34, 36, 38, 39, 45, 50–57, 59, 60,
62–64, 66, 67

FSelectorBatch, 42, 42
FSelectorBatchDesignPoints

(mlr_fselectors_design_points),
51

71

72 INDEX

FSelectorBatchExhaustiveSearch
(mlr_fselectors_exhaustive_search),
53

FSelectorBatchGeneticSearch
(mlr_fselectors_genetic_search),
55

FSelectorBatchRandomSearch
(mlr_fselectors_random_search),
56

FSelectorBatchRFE, 61
FSelectorBatchRFE (mlr_fselectors_rfe),

58
FSelectorBatchRFECV

(mlr_fselectors_rfecv), 61
FSelectorBatchSequential, 64
FSelectorBatchSequential

(mlr_fselectors_sequential), 63
FSelectorBatchShadowVariableSearch, 66
FSelectorBatchShadowVariableSearch

(mlr_fselectors_shadow_variable_search),
65

fsi, 46
fsi(), 33, 36
fss (fs), 29
fss(), 50, 51

genalg::rbga.bin(), 55

Measures, 31
mlr3::benchmark(), 8, 14, 36, 42
mlr3::BenchmarkResult, 4, 5, 19, 22, 23,

26–28, 48
mlr3::Learner, 6, 8–10, 13, 14, 20, 30, 31,

34, 37, 45, 46, 58, 61, 68, 70
mlr3::Measure, 5, 6, 8, 10, 13, 14, 21, 31, 34,

37, 45, 47, 68, 70
mlr3::Prediction, 7
mlr3::resample(), 8, 14
mlr3::ResampleResult, 4, 7, 26–28, 32, 33,

36, 45
mlr3::Resampling, 8, 10, 13, 14, 20, 21, 31,

34, 37, 45, 47, 68, 70
mlr3::ResamplingBootstrap, 20
mlr3::ResamplingCustom, 61
mlr3::ResamplingInsample, 61
mlr3::ResamplingSubsampling, 20
mlr3::Task, 6, 20, 31, 34, 37, 45, 46, 53, 57,

64, 68, 70
mlr3fselect (mlr3fselect-package), 3

mlr3fselect-package, 3
mlr3fselect.backup, 48
mlr3fselect.one_se_rule, 49
mlr3fselect.svm_rfe, 50
mlr3fselect::FSelector, 43, 52, 54, 55, 57,

59, 62, 64, 66
mlr3fselect::FSelectorBatch, 52, 54, 55,

57, 59, 62, 64, 66
mlr3fselect::FSelectorBatchFromOptimizerBatch,

52
mlr3fselect::ObjectiveFSelect, 69
mlr3learners::LearnerClassifSVM, 50
mlr3misc::Callback, 16
mlr3misc::Context, 19
mlr3misc::Dictionary, 29, 50, 51
mlr3misc::dictionary_sugar_get(), 29
mlr_callbacks, 16, 17
mlr_fselectors, 29, 41, 50, 52, 54, 56, 57,

60, 62, 64, 67
mlr_fselectors_design_points, 41, 51, 51,

54, 56, 57, 60, 62, 64, 67
mlr_fselectors_exhaustive_search, 41,

51, 52, 53, 56, 57, 60, 62, 64, 67
mlr_fselectors_genetic_search, 41, 51,

52, 54, 55, 57, 60, 62, 64, 67
mlr_fselectors_random_search, 41, 51, 52,

54, 56, 56, 60, 62, 64, 67
mlr_fselectors_rfe, 41, 51, 52, 54, 56, 57,

58, 62, 64, 67
mlr_fselectors_rfecv, 41, 51, 52, 54, 56,

57, 60, 61, 64, 67
mlr_fselectors_sequential, 41, 51, 52, 54,

56, 57, 60, 62, 63, 67
mlr_fselectors_shadow_variable_search,

41, 51, 52, 54, 56, 57, 60, 62, 64, 65
mlr_reflections$fselect_properties, 40,

43
mlr_terminators, 29

ObjectiveFSelect, 67
ObjectiveFSelectBatch, 36, 69

paradox::ParamSet, 6, 40, 43

R6, 5, 9, 23, 33, 37, 40, 43, 52, 54, 55, 57, 60,
62, 64, 66, 68, 69

R6::R6Class, 30, 50
requireNamespace(), 40, 41, 43

stabm::listStabilityMeasures(), 24

INDEX 73

Terminators, 29, 31

	mlr3fselect-package
	ArchiveBatchFSelect
	AutoFSelector
	auto_fselector
	CallbackBatchFSelect
	callback_batch_fselect
	ContextBatchFSelect
	ensemble_fselect
	ensemble_fs_result
	extract_inner_fselect_archives
	extract_inner_fselect_results
	fs
	fselect
	FSelectInstanceBatchMultiCrit
	FSelectInstanceBatchSingleCrit
	FSelector
	FSelectorBatch
	fselect_nested
	fsi
	mlr3fselect.backup
	mlr3fselect.one_se_rule
	mlr3fselect.svm_rfe
	mlr_fselectors
	mlr_fselectors_design_points
	mlr_fselectors_exhaustive_search
	mlr_fselectors_genetic_search
	mlr_fselectors_random_search
	mlr_fselectors_rfe
	mlr_fselectors_rfecv
	mlr_fselectors_sequential
	mlr_fselectors_shadow_variable_search
	ObjectiveFSelect
	ObjectiveFSelectBatch
	Index

