
Practical: Annotation and Ranges
Martin Morgan (mtmorgan@fhcrc.org)

November 18-22, 2013

Contents

1 Gene annotation 1
1.1 Data packages . 1
1.2 Internet resources . 3

2 Genome annotation 4
2.1 Transcript annotation packages . 4
2.2 rtracklayer . 4

3 Working with ranges 5
3.1 Selecting gene sequences . 10
3.2 Summarizing overlaps . 11

1 Gene annotation

1.1 Data packages

Organism-level (‘org’) packages contain mappings between a central identifier (e.g., Entrez gene ids) and other
identifiers (e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of an org package is always
of the form org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a 2-letter abbreviation of the organism (e.g. Sc
for Saccharomyces cerevisiae) and <id> is an abbreviation (in lower-case) describing the type of central identifier
(e.g. sgd for gene identifiers assigned by the Saccharomyces Genome Database, or eg for Entrez gene ids). The
“How to use the ‘.db’ annotation packages” vignette in the AnnotationDbi package (org packages are only one type
of “.db” annotation packages) is a key reference. The ‘.db’ and most other Bioconductor annotation packages are
updated every 6 months.

Annotation packages usually contain an object named after the package itself. These objects are collectively
called AnnotationDb objects, with more specific classes named OrgDb, ChipDb or TranscriptDb objects. Methods
that can be applied to these objects include cols, keys, keytypes and select. Common operations for retrieving
annotations are summarized in Table 1.

Exercise 1 This exercise illustrates basic use of the ‘select’ interface to annotation packages.

a. What is the name of the org package for Homo sapiens? Load it. Display the OrgDb object for the
org.Hs.eg.db package. Use the columns method to discover which sorts of annotations can be extracted
from it.

b. Use the keys method to extract ENSEMBL identifiers and then pass those keys in to the select method in
such a way that you extract the SYMBOL (gene symbol) and GENENAME information for each. Use the
following ENSEMBL ids.

1

http://bioconductor.org/packages/release/data/annotation/html/org.Sc.sgd.db.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/org.Hs.eg.db.html

Practical: Annotation and Ranges 2

Table 1: Common operations for retrieving and manipulating annotations.

Category Function Description
Discover columns List the kinds of columns that can be returned

keytypes List columns that can be used as keys
keys List values that can be expected for a given keytype
select Retrieve annotations matching keys, keytype and columns

Manipulate setdiff, union, intersect Operations on sets
duplicated, unique Mark or remove duplicates
%in%, match Find matches
any, all Are any TRUE? Are all?
merge Combine two different data.frames based on shared keys

GRanges* transcripts, exons, cds Features (transcripts, exons, coding sequence) as GRanges.
transcriptsBy , exonsBy Features group by gene, transcript, etc., as GRangesList.
cdsBy

ensids <- c("ENSG00000130720", "ENSG00000103257", "ENSG00000156414",

"ENSG00000144644", "ENSG00000159307", "ENSG00000144485")

Solution: The OrgDb object is named org.Hs.eg.db.

library(org.Hs.eg.db)

keytypes(org.Hs.eg.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE" "ACCNUM"

[6] "ALIAS" "CHR" "CHRLOC" "CHRLOCEND" "ENZYME"

[11] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[16] "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

[21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY" "GOALL"

[26] "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

columns(org.Hs.eg.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE" "ACCNUM"

[6] "ALIAS" "CHR" "CHRLOC" "CHRLOCEND" "ENZYME"

[11] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[16] "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

[21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY" "GOALL"

[26] "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

cols <- c("SYMBOL", "GENENAME")

select(org.Hs.eg.db, keys=ensids, columns=cols, keytype="ENSEMBL")

ENSEMBL SYMBOL

1 ENSG00000130720 FIBCD1

2 ENSG00000103257 SLC7A5

3 ENSG00000156414 TDRD9

4 ENSG00000144644 GADL1

5 ENSG00000159307 SCUBE1

6 ENSG00000144485 HES6

GENENAME

1 fibrinogen C domain containing 1

2 solute carrier family 7 (amino acid transporter light chain, L system), member 5

3 tudor domain containing 9

4 glutamate decarboxylase-like 1

Practical: Annotation and Ranges 3

Table 2: Selected packages querying web-based annotation services.

Package Description
AnnotationHub Ensembl, Encode, dbSNP, UCSC data objects
biomaRt http://biomart.org, Ensembl and other annotations
PSICQUIC https://code.google.com/p/psicquic.org, protein interactions
uniprot.ws http://uniprot.org, protein annotations
KEGGREST http://www.genome.jp/kegg, KEGG pathways
SRAdb http://www.ncbi.nlm.nih.gov/sra, sequencing experiments.
rtracklayer http://genome.ucsc.edu, genome tracks.
GEOquery http://www.ncbi.nlm.nih.gov/geo/, array and other data
ArrayExpress http://www.ebi.ac.uk/arrayexpress/, array and other data

5 signal peptide, CUB domain, EGF-like 1

6 hairy and enhancer of split 6 (Drosophila)

1.2 Internet resources

A short summary of select Bioconductor packages enabling web-based queries is in Table 2.

Using biomaRt The biomaRt package offers access to the online biomart resource. this consists of several
data base resources, referred to as ‘marts’. Each mart allows access to multiple data sets; the biomaRt package
provides methods for mart and data set discovery, and a standard method getBM to retrieve data.

Exercise 2 warning: This exericse requires INTERNET ACCESS

a. Load the biomaRt package and list the available marts. Choose the ensembl mart and list the datasets for
that mart. Set up a mart to use the ensembl mart and the hsapiens gene ensembl dataset.

b. A biomaRt dataset can be accessed via getBM. In addition to the mart to be accessed, this function takes
filters and attributes as arguments. Use filterOptions and listAttributes to discover values for these
arguments. Call getBM using filters and attributes of your choosing.

Solution:
NEEDS INTERNET ACCESS !!

library(biomaRt)

head(listMarts(), 3) ## list the marts

head(listDatasets(useMart("ensembl")), 3) ## mart datasets

ensembl <- ## fully specified mart

useMart("ensembl", dataset = "hsapiens_gene_ensembl")

head(listFilters(ensembl), 3) ## filters

myFilter <- "chromosome_name"

head(filterOptions(myFilter, ensembl), 3) ## return values

myValues <- c("21", "22")

head(listAttributes(ensembl), 3) ## attributes

myAttributes <- c("ensembl_gene_id","chromosome_name")

assemble and query the mart

res <- getBM(attributes = myAttributes, filters = myFilter,

values = myValues, mart = ensembl)

http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://biomart.org
http://bioconductor.org/packages/release/bioc/html/PSICQUIC.html
https://code.google.com/p/psicquic.org
http://bioconductor.org/packages/release/bioc/html/uniprot.ws.html
http://uniprot.org
http://bioconductor.org/packages/release/bioc/html/KEGGREST.html
http://www.genome.jp/kegg
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://www.ncbi.nlm.nih.gov/sra
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://genome.ucsc.edu
http://bioconductor.org/packages/release/bioc/html/GEOquery.html
http://www.ncbi.nlm.nih.gov/geo/
http://bioconductor.org/packages/release/bioc/html/ArrayExpress.html
http://www.ebi.ac.uk/arrayexpress/
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html

Practical: Annotation and Ranges 4

Use head(res) to see the results.

Exercise 3 As an optional exercise, annotate the genes that are differentially expressed in the DESeq2 laboratory,
e.g., find the GENENAME associated with the five most differentially expressed genes. Do these make biological
sense? Can you merge the annotation results with the ‘top table’ results to provide a statistically and biologically
informative summary?

2 Genome annotation

There are a diversity of packages and classes available for representing large genomes. Several include:

TxDb.* For transcript and other genome / coordinate annotation.
BSgenome For whole-genome representation. See available.packages for pre-packaged genomes, and the

vignette ‘How to forge a BSgenome data package’ in the
Homo.sapiens For integrating TxDb* and org.* packages.
SNPlocs.* For model organism SNP locations derived from dbSNP.
FaFile (Rsamtools) for accessing indexed FASTA files.
SIFT.*, PolyPhen, ensemblVEP Variant effect scores.

2.1 Transcript annotation packages

Genome-centric packages are very useful for annotations involving genomic coordinates. It is straight-forward,
for instance, to discover the coordinates of coding sequences in regions of interest, and from these retrieve cor-
responding DNA or protein coding sequences. Other examples of the types of operations that are easy to per-
form with genome-centric annotations include defining regions of interest for counting aligned reads in RNA-seq
experiments and retrieving DNA sequences underlying regions of interest in ChIP-seq analysis, e.g., for motif
characterization.

2.2 rtracklayer

The rtracklayer package allows us to query the UCSC genome browser, as well as providing import and export

functions for common annotation file formats like GFF, GTF, and BED.

Exercise 4 warning: This exericse requires INTERNET ACCESS

Here we use rtracklayer to retrieve estrogen receptor binding sites identified across cell lines in the ENCODE
project. We focus on binding sites in the vicinity of a particularly interesting region of interest.

a. Define our region of interest by creating a GRanges instance with appropriate genomic coordinates. Our
region corresponds to 10Mb up- and down-stream of a particular gene.

b. Create a session for the UCSC genome browser
c. Query the UCSC genome browser for ENCODE estrogen receptor ERalphaa transcription marks; identifying

the appropriate track, table, and transcription factor requires biological knowledge and detective work.
d. Visualize the location of the binding sites and their scores; annotate the mid-point of the region of interest.

Solution: Define the region of interest

roi <- GRanges("chr10", IRanges(92106877, 112106876, names="ENSG00000099194"))

Create a session

http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html

Practical: Annotation and Ranges 5

library(rtracklayer)

session <- browserSession()

Query the UCSC for a particular track, table, and transcription factor, in our region of interest
trackName <- "wgEncodeRegTfbsClusteredV2"

tableName <- "wgEncodeRegTfbsClusteredV2"

trFactor <- "ERalpha_a"

ucscTable <- getTable(ucscTableQuery(session, track=trackName,

range=roi, table=tableName, name=trFactor))

Visualize the result

plot(score ~ chromStart, ucscTable, pch="+")

abline(v=start(roi) + (end(roi) - start(roi) + 1) / 2, col="blue")

++

+

+
++

+++

+

+
+
+
++
+

+

++
+
++

+

++
++
+
++
+
+

+++

+
+

+++
+++
+

+

+

+

+

++++

+

+
++

++
++++

+

+++

+

++

+

++

+

++
++++++

+

++
+
+

+
+

++
+
++
+
+
+

+

+++++
+
+

+++
+ + ++

++
+
++++ +++

++
+

++++++

++
+

++++
++++

+

+

+
++
+

+

++

+

+++
+
++++

+

+ + ++
++
+
+

9.50e+07 1.00e+08 1.05e+08 1.10e+08

20
0

60
0

chromStart

sc
or

e

3 Working with ranges

Start by loading the GenomicRanges package and defining the plotRanges helper function

Ranges describe both features of interest (e.g., genes, exons, promoters) and reads aligned to the genome.
Bioconductor has very powerful facilities for working with ranges, some of which are summarized in Table 3. These
are implemented in the GenomicRanges package; see [1] for a more comprehensive conceptual orientation.

The GRanges class Instances of GRanges are used to specify genomic coordinates. Suppose we wish to
represent two D. melanogaster genes. The first is located on the positive strand of chromosome 3R, from posi-
tion 19967117 to 19973212. The second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962306, and right-most base at 18962925. The coordinates are 1-based (i.e., the first nucleotide on a chromo-
some is numbered 1, rather than 0), left-most (i.e., reads on the minus strand are defined to ‘start’ at the left-most
coordinate, rather than the 5’ coordinate), and closed (the start and end coordinates are included in the range; a
range with identical start and end coordinates has width 1, a 0-width range is represented by the special construct
where the end coordinate is one less than the start coordinate). A complete definition of these genes as GRanges
is:

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Practical: Annotation and Ranges 6

Table 3: Selected Bioconductor packages for representing and manipulating ranges, strings, and other data struc-
tures.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and methods (e.g.,

findOverlaps, countOverlaps) for representing and manipulating ranges of
consecutive values. Also introduces DataFrame, SimpleList and other classes
tailored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges,
GRangesList), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., representing
coordinates and organization of exons and transcripts of known genes.

genes <- GRanges(seqnames=c("chr3R", "chrX"),

ranges=IRanges(

start=c(19967117, 18962306),

end = c(19973212, 18962925)),

strand=c("+", "-"),

seqlengths=c(chr3R=27905053, chrX=22422827))

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would define a
data.frame. The start and end coordinates are grouped into an IRanges instance. The optional seqlengths
argument specifies the maximum size of each sequence, in this case the lengths of chromosomes 3R and X in the
‘dm2’ build of the D. melanogaster genome. This data is displayed as
genes

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr3R [19967117, 19973212] +

[2] chrX [18962306, 18962925] -

seqlengths:

chr3R chrX

27905053 22422827

The GRanges class has many useful methods defined on it. Consult the help page
?GRanges

and package vignettes

vignette(package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with accessors for getting and updating
information.

genes[2]

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrX [18962306, 18962925] -

seqlengths:

chr3R chrX

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html

Practical: Annotation and Ranges 7

27905053 22422827

strand(genes)

factor-Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

width(genes)

[1] 6096 620

length(genes)

[1] 2

names(genes) <- c("FBgn0039155", "FBgn0085359")

genes # now with names

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 chr3R [19967117, 19973212] +

FBgn0085359 chrX [18962306, 18962925] -

seqlengths:

chr3R chrX

27905053 22422827

strand returns the strand information in a compact representation called a run-length encoding. The ‘names’ could
have been specified when the instance was constructed; once named, the GRanges instance can be subset by
name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges class by adding information about
seqnames, strand, and other information particularly relevant to representing ranges that are on genomes. The
IRanges class and related data structures (e.g., RangedData) are meant as a more general description of ranges
defined in an arbitrary space. Many methods implemented on the GRanges class are ‘aware’ of the consequences
of genomic location, for instance treating ranges on the minus strand differently (reflecting the 5’ orientation im-
posed by DNA) from ranges on the plus strand.

Operations on ranges The GRanges class has many useful methods. We use IRanges to illustrate these
operations to avoid complexities associated with strand and seqnames, but the operations are comparable on
GRanges. We begin with a simple set of ranges:

ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure 1 and summarized in Table 4.

Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank, narrow, reflect, resize, restrict,
and shift, among others. An illustration is shift, which translates each range by the amount specified by
the shift argument. Positive values shift to the right, negative to the left; shift can be a vector, with each
element of the vector shifting the corresponding element of the IRanges instance. Here we shift all ranges to
the right by 5, with the result illustrated in the middle panel of Figure 1.

shift(ir, 5)

IRanges of length 7

Practical: Annotation and Ranges 8

Figure 1: Ranges

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include disjoin, reduce, gaps, and
range. An illustration is reduce, which reduces overlapping ranges into a single range, as illustrated in the
lower panel of Figure 1.

reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges overlap individual positions. Rather
than returning ranges, coverage returns a compressed representation (run-length encoding)

cvg <- coverage(ir)

cvg

integer-Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

plot(as.integer(cvg), type="s", xlab="Coordinate", ylab="Depth of coverage")

The run-length encoding can be interpreted as ‘a run of length 6 of nucleotides covered by 0 ranges, followed
by a run of length 2 of nucleotides covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These include intersect, setdiff, union,
pintersect, psetdiff, and punion.
The countOverlaps and findOverlaps functions operate on two sets of ranges. countOverlaps takes its
first argument (the query) and determines how many of the ranges in the second argument (the subject)
each overlaps. The result is an integer vector with one element for each member of query. findOverlaps

performs a similar operation but returns a more general matrix-like structure that identifies each pair of query
/ subject overlaps. Both arguments allow some flexibility in the definition of ‘overlap’.

Practical: Annotation and Ranges 9

Table 4: Common operations on IRanges, GRanges and GRangesList.

Category Function Description
Accessors start, end, width Get or set the starts, ends and widths

names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x
shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

Adding mcols and metadata The GRanges class (actually, most of the data structures defined or extending those
in the IRanges package) has two additional very useful data components. The mcols function allows information on
each range to be stored and manipulated (e.g., subset) along with the GRanges instance. The element metadata
is represented as a DataFrame, defined in IRanges and acting like a standard R data.frame but with the ability to
hold more complicated data structures as columns (and with element metadata of its own, providing an enhanced
alternative to the Biobase class AnnotatedDataFrame).

mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),

Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is in the form of a list; any data can
be provided.

metadata(genes) <- list(CreatedBy="A. User", Date=date())

The GRangesList class The GRanges class is extremely useful for representing simple ranges. Some next-
generation sequence data and genomic features are more hierarchically structured. A gene may be represented by
several exons within it. An aligned read may be represented by discontinuous ranges of alignment to a reference.

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html

Practical: Annotation and Ranges 10

The GRangesList class represents this type of information. It is a list-like data structure, which each element of
the list itself a GRanges instance. The ENSEMBL genes identified earlier can be represented as a GRangesList.
GRangesList of length 6:

$84929

GRanges with 10 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr9 [133777825, 133779710] - | 132272 <NA>

[2] chr9 [133780621, 133780800] - | 132273 <NA>

[3] chr9 [133787179, 133787275] - | 132274 <NA>

[4] chr9 [133799131, 133799267] - | 132275 <NA>

[5] chr9 [133799624, 133799783] - | 132276 <NA>

[6] chr9 [133804954, 133805433] - | 132277 <NA>

[7] chr9 [133806160, 133806183] - | 132278 <NA>

[8] chr9 [133813923, 133814035] - | 132279 <NA>

[9] chr9 [133813923, 133814239] - | 132280 <NA>

[10] chr9 [133814390, 133814455] - | 132281 <NA>

##

$8140

GRanges with 10 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

[1] chr16 [87863629, 87866631] - | 215168 <NA>

[2] chr16 [87868020, 87868197] - | 215169 <NA>

[3] chr16 [87870104, 87870253] - | 215170 <NA>

[4] chr16 [87871451, 87871547] - | 215171 <NA>

[5] chr16 [87872320, 87872423] - | 215172 <NA>

[6] chr16 [87873308, 87873431] - | 215173 <NA>

[7] chr16 [87874035, 87874079] - | 215174 <NA>

[8] chr16 [87874656, 87874761] - | 215175 <NA>

[9] chr16 [87885330, 87885455] - | 215176 <NA>

[10] chr16 [87902491, 87903100] - | 215177 <NA>

##

...

<4 more elements>

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

The GRangesList object has methods one would expect for lists (e.g., length, sub-setting). Many of the methods
introduced for working with IRanges are also available, with the method applied element-wise.

3.1 Selecting gene sequences

Exercise 5 This exercise uses annotation packages to go from gene identifiers to coding sequences.

a. Map from an informal gene SYMBOL, e.g., BRCA1, to ENTREZID gene identifiers using the org.Hs.eg.db
package and the select function, use the TxDb.Hsapiens.UCSC.hg19.knownGene package and a second
map to go from ENTREZID to TXNAME.

b. Extract the coding sequence grouped by transcript using the TxDb.Hsapiens.UCSC.hg19.knownGene pack-
age and cdsBy function; select just those transcripts we are interested in.

c. Retrieve the nucleotide sequence from the BSgenome.Hsapiens.UCSC.hg19 package using the function
extractTranscriptsFromGenome.

http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html

Practical: Annotation and Ranges 11

d. Verify that the coding sequences are all multiples of 3, and translate from nucleotide to amino acid sequence.

Solution: Map from gene SYMBOL to ENTREZID, and from ENTREZID to TXNAME

library(org.Hs.eg.db)

egid <- select(org.Hs.eg.db, "BRCA1", "ENTREZID", "SYMBOL")$ENTREZID

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

egToTx <- select(txdb, egid, "TXNAME", "GENEID")

Warning: ’select’ resulted in 1:many mapping between keys and return rows

Extract the releveant coding sequence, grouped by transcript

cdsByTx <- cdsBy(txdb, "tx", use.names=TRUE)[egToTx$TXNAME]

Retrieve the sequence

library(BSgenome.Hsapiens.UCSC.hg19)

txx <- extractTranscriptsFromGenome(Hsapiens, cdsByTx)

Translate to amino acid sequence

all(width(txx) %% 3 == 0) # sanity check

[1] TRUE

translate(txx) # amino acid sequence

A AAStringSet instance of length 20

width seq

[1] 760 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...MCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY*

[2] 1793 MSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFA...MCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY*

[3] 174 MDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKM...MCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY*

[4] 700 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...CCYGPFTNMPTGCPPNCGCAARCLDRGQWLPCNWADV*

[5] 1817 MLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEE...MCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY*

...

[16] 1365 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

[17] 1365 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

[18] 1318 MLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEE...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

[19] 1339 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

[20] 1069 MNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTP...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

3.2 Summarizing overlaps

comment: This repeats an exercise from Day 1

Exercise 6 A basic operation in RNA-seq and other work flows is to count the number of times aligned reads
overlap features of interest.

a. Load the RNAseqData.HNRNPC.bam.chr14 experiment data package and get the paths to the BAM files it
contains.

b. Load the ‘transcript db’ package that contains the coordinates of each exon of the UCSC ’known genes’ track
of hg19.

c. Extract the exon coordinates grouped by gene; the result is an GRangesList object that we will discuss more
latter.

http://bioconductor.org/packages/release/data/experiment/html/RNAseqData.HNRNPC.bam.chr14.html

Practical: Annotation and Ranges 12

d. Use the summarizeOverlaps function with the exon coordinates and BAM files to generate a count of the
number of reads overlapping each gene. Visit the help page ?summarizeOverlaps to read about the counting
strategy used.

e. The counts can be extracted from the return value of summarizeOverlaps using the function assay. This is
standard R matrix. How many reads overlapped regions of interest in each sample? How many genes had
non-zero counts?

Solution: Point to BAM files

library(RNAseqData.HNRNPC.bam.chr14)

fls <- RNAseqData.HNRNPC.bam.chr14_BAMFILES

Get the gene model; this could also come from, e.g., a GFF or GTF file.

library(parallel); options(mc.cores=detectCores())

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

ex <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")

Summarize the number of reads overlapping each region of interest

counts <- summarizeOverlaps(ex, fls)

colSums(assay(counts))

ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304 ERR127305

340669 373302 371666 331540 313817 331160 331639 329672

sum(rowSums(assay(counts)) != 0)

[1] 528

References

[1] Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert Gentleman,
Martin T. Morgan, and Vincent J. Carey. Software for computing and annotating genomic ranges. PLoS
Comput Biol, 9(8):e1003118, 08 2013. URL: http://dx.doi.org/10.1371%2Fjournal.pcbi.1003118, doi:
10.1371/journal.pcbi.1003118.

http://dx.doi.org/10.1371%2Fjournal.pcbi.1003118
http://dx.doi.org/10.1371/journal.pcbi.1003118
http://dx.doi.org/10.1371/journal.pcbi.1003118

	1 Gene annotation
	1.1 Data packages
	1.2 Internet resources

	2 Genome annotation
	2.1 Transcript annotation packages
	2.2 rtracklayer

	3 Working with ranges
	3.1 Selecting gene sequences
	3.2 Summarizing overlaps

