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Use-cases for HTS

• de-novo sequencing and assembly of small genomes
• transcriptome analysis (RNA-Seq, sRNA-Seq, ...)

• identifying transcripted regions
• expression profiling

• Resequencing to find genetic polymorphisms:
• SNPs, micro-indels
• CNVs

• ChIP-Seq, nucleosome positions, etc.
• DNA methylation studies (after bisulfite treatment)
• environmental sampling (metagenomics)
• reading bar codes



Use cases for HTS: Bioinformatics challenges

Established procedures may not be suitable.
New algorithms are required for
• assembly
• alignment
• statistical tests (counting statistics)
• visualization
• segmentation
• ...



Where does Bioconductor come in?

Several steps:
• Processing of the images and determining of the 

read sequencest
• typically done by core facility with software from the 

manufacturer of the sequencing machine

• Aligning the reads to a reference genome (or 
assembling the reads into a new genome)
• Done with community-developed stand-alone tools.

• Downstream statistical analyis.
• Write your own scripts with the help of Bioconductor 

infrastructure.



 

Solexa standard workflow  



SolexaPipeline

• "Firecrest": Identifying clusters
 ⇨ typically 15..20 mio good clusters per lane

• "Bustard": Base calling
 ⇨ sequence for each cluster, 

with Phred-like scores

• "Eland": Aligning to reference



Firecrest output

Large tab-separated text files with one row per 
identified cluster, specifying
•  lane index and tile index
•  x and y coordinates of cluster on tile
•  for each cycle a group of four number, specifying 

the flourescence intensity for A, C, G, and T.



Bustard output

Two tab-seperated text files, with one row per cluster:

• "seq.txt" file:
• lane and tile index, x and y coordinates
• the called sequence as string of A, C, G, T

• "prb.txt" file:
• Phred-like scores, ranging from -40 to 40;
• one value per called base



Fastq format

“FASTA with Qualities”

Example:

@HWI-EAS225:3:1:2:854#0/1

GGGGGGAAGTCGGCAAAATAGATCCGTAACTTCGGG

+HWI-EAS225:3:1:2:854#0/1

a`abbbbabaabbababb^`[aaa`_N]b^ab^``a

@HWI-EAS225:3:1:2:1595#0/1

GGGAAGATCTCAAAAACAGAAGTAAAACATCGAACG

+HWI-EAS225:3:1:2:1595#0/1

a`abbbababbbabbbbbbabb`aaababab\aa_`



Fastq format

Each read is represented by four lines:
•  '@', followed by read ID
• sequence
• '+', optionally followed by repeated read ID
• quality string:

• same length as sequence
• each character encodes the base-call quality of one base



Fastq format: Base-call quality strings

• If p is the probability that the base call is wrong,
the Phred score is:

Q = —10 log10  p

• The score is written with the character whose ASCII 
code is Q+33 (Sanger Institute standard).

• Solexa uses instead the character with ASCII code 
Q+64.

• Before SolexaPipeline version 1.3, Solexa also used a 
different formula, namely Q = —10 log10  (p/(1-p))



FASTQ: Phred base-call qualities

quality score Qphred error prob. p characters

  0 ..   9 1 .. 0.13 !”#$%&'()*

10 .. 19 0.1 .. 0.013  +,-./01234

20 .. 29 0.01 .. 0.0013  56789:;<=>

30 .. 39 0.001 .. 0.00013   ?@ABCDEFGH

40        0.0001                       I



The Sanger / Solexa FASTQ confusion

Solexa's encoding is different from the Sanger standard:

     !”#$%&'()*+,­./0123456789:;<=>?@ABCDEFGHI
;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
     ^         ^         ^         ^         ^

• Most tools (e.g., Maq, Bowtie, BWA) expect Sanger 
scores by default, so you have to either convert the 
scores or tell the tool.

• Also, make sure, the tool does not use the old Solexa 
formula.

0 10 20 30 40

Sanger

Solexa



FASTQ and paired-end reads

Convention for paired-end runs:

The reads are reported two FASTQ files, such that 
the nth read in the first file is mate-paired to the nth 
read in the second file. The read IDs must match.



 

Alignment



Short read alignment: Task

Differences to conventional alignment:
• millions of very short reads, rather than a few long 

ones, have to be mapped to the genome
• dominant cause for mismatches is read errors, not 

substitutions
• base-call quality information (“phred scores”) are 

more important
• only small gaps are expected
• mate-paired reads require special handling
• SOLiD colour space mapping
• atypical reference sequence, e.g., bisulfite 

treatment



Alignment software

In the last two years, many tools for short-read 
alignments have been published:
• Eland
• Maq
• Bowtie
• Biostrings
• BWA
• SSAHA2, Soap, RMAP, SHRiMP, ZOOM, 

NovoAlign, Mosaik, Slider, ...

Which one is right for your task?



Short read alignment: Algorithms

Short-read aligners use one of these ideas to base 
their algorithm on:
• use spaced-seed indexing

• hash seed words from the reference
• hash seed words from the reads

• sort reference words and reads lexicographically

• use the Burrows-Wheeler transform (BWT)
• use the Aho-Corasick algorithm

BWT seems to be the winning idea (very fast, 
sufficiently accurate), and is used by the newest tools 
(Bowtie, SOAPv2, BWA). 



Short read aligners: Differences

Alignment tools differ in 
• speed
• suitability for use on compute clusters
• memory requirements
• sensitivity

• Is a good match always found?
• What is the maximum number of allowed mismatches?
• Are small indels tolerated?

• ease of use
• available down-stream analysis tools

• Are there other tools( SNP and indel callers, visualization tools, 
programming frameworks) that can deal with the tool's output 
format?



Short read aligners: Differences

Alignment tools also differ in whether they can
• make use of base-call quality scores
• estimate alignment quality
• work with paired-end data
• report multiple matches
• work with longer than normal reads
• match in colour space (for SOLiD systems)
• align data from methylation experiments
• deal with splice junctions



Popular alignment tools

• Eland (Solexa)

• supplied by Ilumina as part of the SolexaPipeline
• very fast
• cannot make use of quality score

• Maq (Li et al., Sanger Institute)

• widely used
• interpretes quality score and estimates alignment score
• comes with downstream analysis tools (SNP, indel calling)
• can deal with SOLiD colour space data

• Bowtie (Langmead et al., Univ of Maryland) and BWA (Li et 
al., Sanger Institute)
• new; based on Burrows-Wheeler transform
• very fast, good accuracy
• downstream tools available



Other commonly used aligners

• BWA (H. Li, Sanger Institute)
• BWT-based
• with gapped alignment (for indel calling)
• Calculates alignment qualities
• with module for longer reads: BWA-SW

• SSAHA, SSAHA2 (Sanger Institute)

• one of the first short-read aligners
• SSAHA2 still widely used for 454 alignment

• SOAP and SOAP2 (Beijing Genomics Institute)

• with downstream tools
• SOAP2 uses BWT

• NovoAlign
• commercial, very good sensitivity



Paired-end alignment

When aligning paired-end data, the aligner can use 
the information that mate-paired reads have a known 
separation:
• Try to align the reads individually
• Then, for each aligned read, attempt to align the 

mate in a small window near the first read's 
position with a more sensitive algorithm, e.g., 
Smith-Waterman to allow for gaps.
• Be sure to tell the aligner the minimal and maximal separation.

• This helps to find small and large indels and other 
structural variants.



The SAM format 
and the SAMtools



Aligner output formats

• Most aligners use their own format to output the 
alignments.

• Hence, downstream tools cannot be exchanged 
between aligners.

• To resolve this issue, Li et al. have suggested a 
standardized file format:
the Sequence Alignment/Map (SAM) format

• SAM is increasingly used in newest tools.
• Converters from legacy formats are included with 

the SAMtools.



A SAM file

[...]

HWI-EAS225_309MTAAXX:5:1:689:1485 0 XIII 863564 25 36M *
0 0 GAAATATATACGTTTTTATCTATGTTACGTTATATA

CCCCCCCCCCCCCCCCCCCCCCC4CCCB4CA?AAA< NM:i:0 X0:i:1 MD:Z:36

HWI-EAS225_309MTAAXX:5:1:689:1485 16 XIII 863766 25 36M *
0 0 CTACAATTTTGCACATCAAAAAAGACCTCCAACTAC

=8A=AA784A9AA5AAAAAAAAAAA=AAAAAAAAAA NM:i:0 X0:i:1 MD:Z:36

HWI-EAS225_309MTAAXX:5:1:394:1171 0 XII 525532 25 36M *
0 0 GTTTACGGCGTTGCAAGAGGCCTACACGGGCTCATT

CCCCCCCCCCCCCCCCCCCCC?CCACCACA7?<??? NM:i:0 X0:i:1 MD:Z:36

HWI-EAS225_309MTAAXX:5:1:394:1171 16 XII 525689 25 36M *
0 0 GCTGTTATTTCTCCACAGTCTGGCAAAAAAAAGAAA 7AAAAAA?

AA<AA?AAAAA5AAA<AAAAAAAAAAAA NM:i:0 X0:i:1 MD:Z:36

HWI-EAS225_309MTAAXX:5:1:393:671 0 XV 440012 25 36M *
0 0 TTTGGTGATTTTCCCGTCTTTATAATCTCGGATAAA

AAAAAAAAAAAAAAA<AAAAAAAA<AAAA5<AAAA3 NM:i:0 X0:i:1 MD:Z:36

HWI-EAS225_309MTAAXX:5:1:393:671 16 XV 440188 25 36M *
0 0 TCATAGATTCCATATGAGTATAGTTACCCCATAGCC ?9A?A?CC?

<ACCCCCCCCCCCCCCCCCACCCCCCC NM:i:0 X0:i:1 MD:Z:36

[...]



The SAM format

A SAM file consists of two parts:
• Header

• contains meta data (source of the reads, reference genome, 
aligner, etc.)

• Most current tools omit and/or ignore the header.
• All header lines start with “@”.
• Header fields have standardized two-letter codes for easy 

parsing of the information

• Alignment section
• A tab-separated table with at least 11 columns
• Each line describes one alignment



SAM format: Alignment section

The columns are:
• QNAME: ID of the read (“query”)
• FLAG: alignment flags
• RNAME: ID of the reference (typically: chromosome name)
• POS: Position in reference (1-based, left side)
• MAPQ: Mapping quality (as Phred score)
• CIGAR: Alignment description (gaps etc.) in CIGAR format
• MRNM: Mate reference sequence name [for paired end data]
• MPOS: Mate position [for paired end data]
• ISIZE: inferred insert size [for paired end data]
• SEQ: sequence of the read
• QUAL: quality string of the read
• extra fields



SAM format: Flag and extra fields

FLAG field: A number, encoding
• whether the read is from a paired-end run, and if so, which one
• if so, whether the read and/or its mate are mapped
• whether the read mapped to the forward or the reverse strand
• whether the read passed platform quality checks
• [and a few more things]

Extra fields:
• Always triples of the format TAG : VTYPE : VALUE
• may encode number of mismatches (“NM”), number  of 

alignments for the same read, extra informations on quality, 
aligner-specific data etc.



SAM format: extended CIGAR strings

Alignments contain gaps (e.g., in case of an indel, or, 
in RNA-Seq, when a read straddles an intron).
Then, the CIGAR string gives details.
Example: “M10 I4 M4 D3 M12” means
• the first 10 bases of the read map (“M10”) normally (not 

necessarily perfectly)
• then, 4 bases are inserted (“I4”), i.e., missing in the reference
• then, after another 4 mapped bases (“M4”), 3 bases are deleted 

(“D4”), i.e., skipped in the query.
• Finally, the last 12 bases match normally.

There are further codes (N, S, H, P), which are rarely used.



SAMtools

• The SAMtools are a set of simple tools to
• convert between SAM and BAM

• SAM: a human-readable text file
• BAM: a binary version of a SAM file, suitable for fast processing

• sort and merge SAM files
• index SAM and FASTA files for fast access
• view alignments (“tview”)
• produce a “pile-up”, i.e., a file showing

• local coverage
• mismatches and consensus calls
• indels

• The SAMtools C API facilitates the development of 
new tools for processing SAM files.



Screenshot of SAMtools tview



MaqView: Another alignment viewer



SAMtools pileup output

I  25514  G   G   42   0    25   5    ....^:. CCCCC
I  25515  T   T   42   0    25   5    ..... CC?CC
I  25516  A   G   48   48   25   7    GGGGG^:G^:g CCCCCC5
I  25517  G   G   51   0    25   8    ......,^:, CCCCCC1?
I  25518  T   T   60   0    25   11   ......,,^:.^:,^:,  CCCCCC3A<:;
I  25519  T   T   60   0    25   11   ......,,.,, CCCCCC>A@AA
I  25520  G   G   60   0    25   11   ......,,.,, CCCACC>A@<A
I  25521  T   T   60   0    25   11   ......,,.,, CCCCCC?ACAA
I  25522  A   A   60   0    25   11   ......,,.,, CCCCCC>ACAA
I  25523  A   A   72   0    25   15   ......,,.,,^:.^:,^:,^:. CCCCCC;ACAAC??C
I  25524  C   C   72   0    25   15   ......,,.,,.,,. CCCCCC6<<A?C=9C
I  25525  C   C   56   0    24   18   ......,,.,,.,,.^:,^!.^:T   CCCCCC>ACA?C=AC<CC
I  25526  A   A   81   0    24   18   ......,,.,,.,,.,..         CCCCCC>ACAACAACACC
I  25527  A   A   56   0    24   18   ......,,.,,.,,.,.G         CCCCCC?ACAA@A?CACC

Fields: chromosome, position, reference base, consensus base, 
consensus quality, SNP quality, maximum mapping quality, 
coverage, base pile-up, base quality pile-up



Coverage vectors



Coverage 

• In resequencing, we hope to sequence uniformly, 
i.e., see each part of the genome represented by the 
same amount of reads.

• Due to the random nature of shotgun sequencing, 
we need to “cover the genome several times” in 
order to see each position at least once. 

• In other techniques (ChIP-Seq, RNA-Seq, Tag-Seq, 
CNV-Seq, etc.), the local coverage is what we are 
interested in.



Coverage vectors

<-- coverage vector

Figure taken from Zhang et al., PLoS Comp. Biol. 2008

<-- Solexa reads, 
  aligned to genome



Coverage vectors

• A coverage (or: “pile-up”) vector is an integer 
vector with on element per base pair in a 
chromosome, tallying the number of reads (or 
fragments) mapping onto each base pair.

• It is the essential intermediate data type in assays 
like ChIP-Seq or RNA-Seq

• One may ever count the coverage by the reads 
themselves, or extend to the length of the 
fragments



Calculating coverage vectors

Extending reads to fragments:



Chip-Seq coverage: examples

Figure courtesy of Christiana Spyrou (CR UK)



The issue with multiple reads

If one finds several reads with the exact same 
sequenche, does this mean
• that many fragments from this locus were 

precipitated and often got  got cut at the exact same 
place, or

• that there was only a single fragment, but it was 
amplified more efficiently than fragments from 
other loci in the PCR (or more efficiently 
transcribed to cDNA)?
• If you consider the latter more likely, you should count these 

reads only once. However, this dramatically compresses your 
dynamic range.



Ambiguous matches and mappability

• If a read matches at several places in the reference, 
the best match should be used.

• If there are several equally good matches, an aligner 
may
• chose an alignment at random
• discard the read
• report all alignments and delay the choice to downstream 

analysis

• It is useful to know which regions in the genome 
are repetitive on the scale of the read length and 
hence give rise to alignment ambiguities.



*
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