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Abstract

While we often think of the genome as a linear object, in reality chromosomes are folded
in a highly complex fashion with regions that are located far apart on the same chromo-
some often coming in contact with one another. For example, many enhancer or insulator
elements are located distal to the genes they target and come in contact via folding. Hence,
understanding the conformation of chromatin is criticial for understanding regulatory mech-
anisms in a cell. With the advent of next-generation sequencing technology, we can now
study chromosome conformation genome-wide using a technique called Hi-C. In brief, after
cross-linking, digestion, ligation, and sonication, this technique captures interacting regions
of DNA sequence by paired-end sequencing. For example, regions i and j might be two non-
adjacent regions on the same chromosome in the fragment captured, sequence from region i
is at one end and sequence from region j is at the other. Having captured these fragments,
paired-end sequencing can then be used to assay a small section of sequence from region i
and region j. By mapping these reads back to the reference genome, and by counting the
number of reads with one end in region i and the other end in region j one can determine
the strength of evidence for an interaction between those two regions.

In this practical, we will analyze one of the first Hi-C datasets generated [2]. We will
understand how to obtain the data and read them into R, before processing these data to
determine some measure of interaction frequency between different regions on a particular
chromosome. Finally, we will combine the conformational information with data about other
epigenetic modifications to investigate whether there appear to be any interactions between
these different data types.
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1 Introduction to the data
In this lab we will work with the data of the GM06990 cell line obtained from three experiments.
Of these, two replicates used the restriction enzyme HindIII and one used NcoI. Altogether, these
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experiments produced ca. 8.4 Mio mappable paired-end reads. Here, we only focus on the data
of chromosome 14. How the data can be downloaded from the internet and formated into the
dataframe HiC_GM_chr14, which is provided in the package, is described in Section 4 in detail.
We follow the analysis of Lieberman-Aiden and pool the three experiments. This is justified by
comparing the interaction matrices for each experiment. See Figures 1 B-D in the paper.

The format of HiC_GM_chr14 is explained in the file GSE18199_readme_v4.txt, which we
provide in the extdata directory of the package. Briefly, each line corresponds to one paired end
alignment. Each line has 9 entries:

read name, chromosome1, position1, strand1, restrictionfragment1, chromosome2,
position2, strand2, restrictionfragment2

Of these, the four with last character "1" correspond to the first paired end, and the four with last
character "2" to the second paired end. position is position in base pairs where the alignment
starts. The alignments are based on the hg18 assembly of the human genome.

2 The adjacency matrix for chromosome 14
As first step, we load the data and have a look at the content of the data.frame. A first visual
impression of the interactions is obtained by plotting the position of the first fragment against
the position of the second fragment in a scatterplot (Figure 1).

> library(LiebermanAidenHiC2009)
> data("HiC_GM_chr14")
> head(HiC_GM_chr14)

read name chromosome1 position1 strand1 restrictionfragment1
3112130 1:92:364:1569 14 28933774 0 3226
3112131 1:20:1690:1830 14 18070705 0 0
3112132 1:65:479:1658 14 18070922 0 0
3112137 1:72:633:42 14 18071973 1 1
3112145 1:97:353:2040 14 18072740 0 1
3112148 1:14:1294:1281 14 18087996 0 9

chromosome2 position2 strand2 restrictionfragment2
3112130 14 18071056 0 0
3112131 14 18071075 1 0
3112132 14 18071183 1 0
3112137 14 18071976 0 1
3112145 14 18072977 1 2
3112148 14 18074297 1 2

> pos = with(HiC_GM_chr14, cbind(position1, position2))

> plot(pos, pch='.', col="#77777777")

To create a matrix of intrachromosomal locus–locus interaction frequencies, let us smooth
the data using the bkde2D function of the KernSmooth package.

> chrlen = max(pos)
> gridsize = ceiling(chrlen/2e5)
> bandwidth = 3e5
> den = bkde2D( pos, bandwidth=c(1,1)*bandwidth, gridsize=c(1,1)*gridsize)
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Figure 1: Scatterplot of fragment position 1 against 2 for the HiC read pairs for which both ends
map to chromosome 14.

Since the the labeling of the reads within a pair as 1 or 2 is arbitrary, and pairwise interaction
is a symmetric concept, we symmetrize the matrix by adding the transpose.

> den$fhat <- den$fhat + t(den$fhat)

We use the image function to visualise the interaction matrix in false color representation.

> with(den, image(x=x1, y=x2, z=fhat^0.3,
+ col=colorRampPalette(c("white","blue"))(256), useRaster=TRUE))

The result is shown in Figure 2.

• What is the point of the exponentiation (∧0.3)? What happens if you do not do it, or use
another transformation?

The diagonal is strongly pronounced because the contact frequency is highest for small ge-
nomic distances. To normalize for this, and focus on the (possibly interesting) deviations from
this general relationship, we calculate the mean number of interactions at a given genomic dis-
tance. First we do this for the secondary diagonals and then add the diagonal. The resulting
matrix m is plotted in Figure 3.
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Figure 2: Interaction matrix obtained from smoothing the positions of paired read alignments.
Compare this to Figure 3 A in the paper [2]. Can you explain why the diagonal looks more
pronounced here than in the paper, and more off diagonal structures can be seen in the paper.
Hint: Try to set a threshold for the maximum value of the data.

> m = matrix(0, nrow=gridsize, ncol=gridsize)
> for(i in 1:(gridsize-1)) {
+ band = (row(m)==col(m)+i)
+ m[band] = mean(den$fhat[band])
+ }
> m = m + t(m)
> diag(m) = mean(diag(den$fhat))

> image(x=den$x1, y=den$x2, z=m^0.3,
+ col=colorRampPalette(c("white","blue"))(256), useRaster=TRUE)

Plotting the avarage number of interactions against the genomic distance is a better way
of visualizing the data. It is achieved by plotting the first row (or column as the matrix is
symmetric) against genomic distance and shown in Figure 4

> genomicDistance = den$x1 - min(den$x1)
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Figure 3: The matrix of avarage interactions m. It looks like a ridge that falls of on both sides of
the diagonal.

> averageInteractions = m[1,]
> plot(genomicDistance, sqrt(averageInteractions), type ="l")

• How can the steep drop be explained?

• What could be an explanation for the bump at the right end of the curve?

• Why might it make sense to plot the square root of average interactions against genomic
distance between to loci? Hint: Think about where points lie in three dimensions at a
given distance r from a point of origin p.

With the calculated matrix of average interactions we can normalize our data by dividing the
two matrices and plot the result.

> fhatNorm <- den$fhat/m

> image(x=den$x1, y=den$x2, z=fhatNorm,
+ col=colorRampPalette(c("white","blue"))(256), useRaster=TRUE)
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Figure 4: Average number of interactions within chromosome 14 ploted against the genomic
distance between the fragments.

By normalizing for one, fairly obvious factor, genomic distance, we have removed uninteresst-
ing structure from the raw data, and obtained a possibly more interesting picture in Figure 5.
We can see that the plaid pattern is more pronounced than before.

One could think of other factors that might influence the results, like GC content or restriction
enzyme biases, and try if a correction for these is worthwhile.

Another view on the data is provided by caluclating the correlation matrix, where the entry
(i, j) is the correlation of the of the row i with row j. Plotting the correlation matrix and using
a third color in the plot, we can see that the chromosome basically splits into 2 compartments
(blue and red) shown in Figure 6.

> cm <- cor(fhatNorm)

> image(x=den$x1, y=den$x2, z=cm,
+ zlim=c(-1,1),
+ col=colorRampPalette(c("red", "white","blue"))(256), useRaster=TRUE)

As next step we perform a principal component analysis on the matrix and retrieve the first
two eigenvectors.
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Figure 5: Interaction matrix after devision by the expected number of read pairs.

Because we want to compare these vectors to ChIP-seq experiments of histone modifications
and DNAse1 sensitivity, we use run-length encoding (Rle) to store the vectors. The Rle class of
the IRanges package provides an efficient way of storing vectors that have long constant runs.

> princp = princomp(cm)

> plot(den$x1, princp$loadings[,1], type="l")

See Figure 7.

> pc1Vec = Rle(values = princp$loadings[,1],
+ lengths = c(den$x1[1], diff(den$x1)))
> pc2Vec = Rle(values = princp$loadings[,2],
+ lengths = c(den$x1[1], diff(den$x1)))

3 Comparison with chromatin state data
We would like to explore the pattern we found in the previous section in the context of chromatin
state data. For this we use data that were produced in the Encode project [1]. How these data
were obtainted and formated is described in Section 4.
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Figure 6: Correlation matrix calculated from the normalized interaction matrix.

The data files contain the the following information about ChIP-seq peaks found for chromo-
some 14:

chromosome, start position, end position, name, score, strand, signal value,
pValue, qValue

For each peak, we want the start position, end position and the signal value in this range. To
create a Rle vector from the data, we use the following function.

> createRleVector = function(tab){
+ RleVec = Rle(0, max(tab$end))
+ for(i in 1:nrow(tab)){
+ RleVec = RleVec +
+ Rle(values = c(0, tab$signalValue[i], 0),
+ lengths = c(tab$start[i]-1,
+ tab$end[i]-tab$start[i]+1,
+ length(RleVec)-tab$end[i]))
+ }
+ RleVec
+ }
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Figure 7: princp$loadings[,1].

The Chip-seq data can be loaded from the package and the function can be applied directly.

> data("ChipSeqData")
> H3K27me3 = createRleVector(H3K27me3.df)
> H3K36me3 = createRleVector(H3K36me3.df)
> DNAse1 = createRleVector(DNAse1.df)
> DNAse2 = createRleVector(DNAse2.df)

To combine the two DNAse1 replicates we have to make sure that the vectors have the same
length.

> length(DNAse1)

[1] 106358944

> length(DNAse2)

[1] 106359236

> DNAse = DNAse1 + DNAse2[seq(along=DNAse1)]

For plotting the first eigenvector against the ChIP-seq data, we have to make sure that we
use the same scale for all plots. Therefore we define a plotting function that covers the same
genomic range by setting a fixed x-axis range xlim. We also want to plot them on top of each
other in one plot and do this by setting par accordingly. The result is shown in Figure 8

> plotRle = function(RleVector, ...){
+ plot(end(RleVector), runValue(RleVector)+1, type="h", log="y",
+ xlim = c(1.5e+7, 107000000), xlab="", ylab=deparse(substitute(RleVector)),
+ ...)
+ }
>
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Figure 8: Plots of pc1Vec, H3K27me3, H3K36me3, DNAse1.

> par(mfrow=c(4,1), mai=c(0.5,0.7,0.1,0.1))
> plotRle(pc1Vec)
> plotRle(H3K27me3)
> plotRle(H3K36me3)
> plotRle(DNAse1)

From looking at the plots the data seem to correlate quite well. To assess this more quanti-
tatively we calculate the correlation of the vectors. To do this we need to make sure that they
all are of same length.
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> c(length(H3K27me3),
+ length(H3K36me3),
+ length(DNAse),
+ length(pc1Vec))

[1] 106360575 105401700 106358944 106810060

> x = seq(along=H3K36me3)
> cor(H3K27me3[x], pc1Vec[x])

[1] -0.3783589

> cor(H3K36me3, pc1Vec[x])

[1] -0.4767175

> cor(DNAse[x], pc1Vec[x])

[1] -0.08286722

As you see, the correlation coefficents are less convincing than the visual impression, especially
for DNAse1.

• Discuss this topic. Repeat the last steps for the second eigenvector of the principal com-
ponent analysis.

• Which other analyses or annotations could be done now to put the spacial proximity into
a functional context?

4 Obtaining the data
The data associated with the article [2] is available from NCBI Gene Expression Omnibus under
the accession GSE18199. From this record, we downloaded the supplementary file
GSE18199_RAW.tar and extracted its content.

$ wget f tp :// f tp . ncbi . nih . gov/pub/geo/DATA/supplementary / s e r i e s /
GSE18199/GSE18199_RAW. tar
$ ta r −xvf GSE18199_RAW. tar

From the resulting set of files, we selected six files, whose names are given in the following
code chunk. They contain HiC data for the GM06990 cell line from three experiments (two
replicates with the restriction enzyme HindIII and one with NcoI). The sample information is
summarized in the following table.

> sampleAnnotation =
+ data.frame(
+ file = c("GSM455133_30E0LAAXX.1.maq.hic.summary.binned.txt.gz",
+ "GSM455134_30E0LAAXX.2.maq.hic.summary.binned.txt.gz",
+ "GSM455135_30U85AAXX.2.maq.hic.summary.binned.txt.gz",
+ "GSM455136_30U85AAXX.3.maq.hic.summary.binned.txt.gz",
+ "GSM455137_30305AAXX.1.maq.hic.summary.binned.txt.gz",
+ "GSM455138_30305AAXX.2.maq.hic.summary.binned.txt.gz"),
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+ experiment = c(1, 1, 2, 2, 3, 3),
+ lane = c(1,2,1,2,1,2),
+ restrictionenzyme = c("HindIII", "HindIII", "HindIII", "HindIII",
+ "NcoI", "NcoI"),
+ stringsAsFactors = FALSE)

The format of these files is explained in the file GSE18199_readme_v4.txt, which we provide
in the extdata directory of the package or can be downloaded from NCBI Gene Expression
Omnibus.

To create the dataframe HiC_GM_chr14 for this practical we used the following code and
follow Lieberman-Aiden in pooling the three experiments of the GM06990 cell line. This was
justified by comparing the interaction matrices of individual experiment with each other. See
Figures 1 B-D in the paper.

> inputDir = "WHERE YOU SAVED THE FILES"
> outputDir = "WHERE YOU WANT TO SAVE THE FILES"
> df = vector(mode="list", length=nrow(sampleAnnotation))
> for(i in seq(along=df)) {
+ cat("Reading file", i, "\n")
+ r = read.table(gzfile(file.path(inputDir, sampleAnnotation$file[i])),
+ header=FALSE, sep="\t", comment.char = "", stringsAsFactors=FALSE)
+ colnames(r) = c("read name",
+ "chromosome1", "position1", "strand1", "restrictionfragment1",
+ "chromosome2", "position2", "strand2", "restrictionfragment2")
+ ## filter chromosome 14
+ df[[i]] = subset(r, (chromosome1==14L) & (chromosome2==14L))
+ }
> HiC_GM_chr14 = do.call(rbind, df)
> save(HiC_GM_chr14,
+ file=file.path(outputDir, "HiC_GM_chr14.RData"))

For comparison with the cromatin state we use Chip-seq data produced within the ENCODE
project [1]. It was downloaded from these URLs.

$ wget http :// hgdownload . c s e . ucsc . edu/goldenPath/
hg18/encodeDCC/wgEncodeBroadHistone/
wgEncodeBroadHistoneGm12878H3k27me3StdPk . broadPeak . gz
$ wget http :// hgdownload . c s e . ucsc . edu/goldenPath/
hg18/encodeDCC/wgEncodeBroadHistone/
wgEncodeBroadHistoneGm12878H3k36me3StdPk . broadPeak . gz
$ wget http :// hgdownload . c s e . ucsc . edu/goldenPath/
hg18/encodeDCC/wgEncodeUwDnaseSeq/
wgEncodeUwDnaseSeqHotspotsRep1Gm06990 . broadPeak . gz
$ wget http :// hgdownload . c s e . ucsc . edu/goldenPath/
hg18/encodeDCC/wgEncodeUwDnaseSeq/
wgEncodeUwDnaseSeqHotspotsRep2Gm06990 . broadPeak . gz

These files are read into data.frames and saved.

> files = c("wgEncodeBroadChipSeqPeaksGm12878H3k27me3.broadPeak.gz",
+ "wgEncodeBroadChipSeqPeaksGm12878H3k36me3.broadPeak.gz",
+ "wgEncodeUwDnaseSeqHotspotsRep1Gm06990.broadPeak.gz",
+ "wgEncodeUwDnaseSeqHotspotsRep2Gm06990.broadPeak.gz")
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> inputDir = "WHERE YOU SAVED THE FILES"
> outputDir = "WHERE YOU WANT TO SAVE THE FILES"
> cs = vector(mode="list", length=length(files))
> for(i in seq(along=files)) {
+ cat("Reading file", i, "\n")
+ tab = read.table(gzfile(file.path(inputDir, files[i])), header=FALSE, sep="\t", comment.char = "", stringsAsFactors=FALSE)
+ colnames(tab) <- c("chr", "start", "end", "name", "score", "strand",
+ "signalValue", "pValue", "qValue")
+ cs[[i]] = subset(tab, chr=="chr14")
+ }
> H3K27me3.df = cs[[1]]
> H3K36me3.df = cs[[2]]
> DNAse1.df = cs[[3]]
> DNAse2.df = cs[[4]]
> save(list=c("H3K27me3.df", "H3K36me3.df", "DNAse1.df", "DNAse2.df"), file=file.path(outputDir, "ChipSeqData.RData"))

5 SessionInfo
> toLatex(sessionInfo())

• R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: BiocGenerics 0.52.0, IRanges 2.40.0, KernSmooth 2.23-24,
LiebermanAidenHiC2009 0.44.0, S4Vectors 0.44.0

• Loaded via a namespace (and not attached): compiler 4.4.1, tools 4.4.1

The output of sessionInfo on the build system after running this vignette.
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