--- title: "trackViewer Vignette: plot interaction data" author: "Jianhong Ou, Lihua Julie Zhu" date: "`r BiocStyle::doc_date()`" package: "`r BiocStyle::pkg_ver('trackViewer')`" abstract: > Visualize chromatin interactions along with annotation as track layers. The interactions can be compared by back to back heatmaps. The interactions can be plot as heatmap and links. vignette: > %\VignetteIndexEntry{trackViewer Vignette: plot interaction data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} output: html_document: theme: simplex toc: true toc_float: true toc_depth: 4 fig_caption: true --- ```{r, echo=FALSE, results="hide", warning=FALSE} suppressPackageStartupMessages({ library(trackViewer) library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) library(InteractionSet) }) knitr::opts_chunk$set(warning=FALSE, message=FALSE) ``` # Introduction The chromatin interactions is involved in precise quantitative and spatiotemporal control of gene expression. The development of high-throughput experimental techniques, such as HiC-seq, HiCAR-seq, and InTAC-seq, for analyzing both the higher-order structure of chromatin and the interactions between protein and their nearby and remote regulatory elements has been developed to reveal how gene expression is controlled in genome-wide. The interaction data will be saved in the format of paired genome coordinates with the interaction score. The popular format are `.validPairs`, `.hic`, and `.cool`. The `trackViewer` package can be used to handle those data to plot the heatmap or the interaction links. # Plot chromatin interactions data Plot chromatin interactions tracks as heatmap. ```{r plotback2back} library(trackViewer) library(InteractionSet) gi <- readRDS(system.file("extdata", "nij.chr6.51120000.53200000.gi.rds", package="trackViewer")) head(gi) ## hicexplorer:hicConvertFormat tool can be used to convert other formats into GInteractions ## eg: hicConvertFormat -m mESC_rep.hic --inputFormat hic --outputFormat cool -o mESC_rep.mcool ## hicConvertFormat -m mESC_rep.mcool::resolutions/10000 --inputFormat cool --outputFormat ginteractions -o mESC_rep.ginteractions --resolutions 10000 ## please note that metadata:score is used for plot. gi$border_color <- NA ## highlight some regions gi$border_color[sample(seq_along(gi), 20)] <- sample(1:7, 20, replace=TRUE) ## The TADs will be drawn as lines at points start(first), center point, end(second). tads <- GInteractions( GRanges("chr6", IRanges(c(51130001, 51130001, 51450001, 52210001), width = 20000)), GRanges("chr6", IRanges(c(51530001, 52170001, 52210001, 53210001), width = 20000))) range <- GRanges("chr6", IRanges(51120000, 53200000)) heatmap <- gi2track(gi) ctcf <- readRDS(system.file("extdata", "ctcf.sample.rds", package="trackViewer")) viewTracks(trackList(ctcf, heatmap, heightDist = c(1, 3)), gr=range, autoOptimizeStyle = TRUE) ## add TAD information addInteractionAnnotation(tads, "heatmap", grid.lines, gp=gpar(col="#E69F00", lwd=3, lty=3)) ## add highlight interested regions gi_sub <- gi[order(gi$score, decreasing = TRUE)] gi_sub <- head(gi_sub[distance(first(gi_sub), second(gi_sub))>200000], n=5) start(regions(gi_sub)) <- start(regions(gi_sub))-40000 end(regions(gi_sub)) <- end(regions(gi_sub))+40000 addInteractionAnnotation(gi_sub, "heatmap", grid.polygon, gp=gpar(col="red", lwd=2, lty=2, fill=NA)) ## add interesting anchor at giving coordinate. addInteractionAnnotation(52900000, "heatmap", gp=gpar(col="blue", lwd=3)) addInteractionAnnotation(-52900000, "heatmap", gp=gpar(col="cyan", lwd=3, lty=4)) ## view the interaction data back to back. ## Please make sure the data are normalized. gi2 <- gi set.seed(123) gi2$score <- gi$score + rnorm(length(gi), sd = sd(gi$score)) back2back <- gi2track(gi, gi2) ## change the color setTrackStyleParam(back2back, "breaks", c(seq(from=0, to=50, by=10), 200)) setTrackStyleParam(back2back, "color", c("lightblue", "yellow", "red")) ## chang the lim of y-axis (by default, [0, 1]) setTrackStyleParam(back2back, "ylim", c(0, .5)) viewTracks(trackList(ctcf, back2back, heightDist=c(1, 5)), gr=range, autoOptimizeStyle = TRUE) addInteractionAnnotation(tads, "back2back", grid.lines, gp=gpar(col="cyan", lwd=3, lty=2)) addInteractionAnnotation(-52208000, "back2back", gp=gpar(col="blue", lwd=3), panel="top") addInteractionAnnotation(51508000, "back2back", gp=gpar(col="gray", lwd=3, lty=2), panel="bottom") ``` Plot chromatin interactions track as links. ```{r plotLinks, fig.width=6, fig.height=3} setTrackStyleParam(heatmap, "tracktype", "link") setTrackStyleParam(heatmap, "breaks", c(seq(from=0, to=50, by=10), 200)) setTrackStyleParam(heatmap, "color", c("lightblue", "yellow", "red")) ## filter the links to simulate the real data keep <- distance(heatmap$dat, heatmap$dat2) > 5e5 & heatmap$dat$score>20 heatmap$dat <- heatmap$dat[keep] heatmap$dat2 <- heatmap$dat2[keep] viewTracks(trackList(heatmap), gr=range, autoOptimizeStyle = TRUE) ``` To import interactions data from ".hic" (reference to the script of [hic-straw](https://github.com/aidenlab/straw) and the [documentation](https://www.cell.com/cms/10.1016/j.cels.2016.07.002/attachment/ce39448c-9a11-4b4e-a03f-45882b7b1d9d/mmc2.xlsx)). The function `importGInteractions` (trackViewer version>=1.27.6) can be used to import data from `.hic` format file. ```{r inportHic} hic <- system.file("extdata", "test_chr22.hic", package = "trackViewer", mustWork=TRUE) if(.Platform$OS.type!="windows"){ importGInteractions(file=hic, format="hic", ranges=GRanges("22", IRanges(50000000, 100000000)), out = "GInteractions") } ``` Another widely used genomic interaction data format is `.cool` files and the [cooler index](ftp://cooler.csail.mit.edu/coolers) contains analyzed HiC data for hg19 and mm9 from many different sources. Those files can be used as data resources for visualizations and annotations (see [ChIPpeakAnno::findEnhancers](https://rdrr.io/bioc/ChIPpeakAnno/man/findEnhancers.html)). The `importGInteractions` function can also be used to import data from `.cool` format (trackViewer version>=1.27.6). ```{r importCool, eval=FALSE} cool <- system.file("extdata", "test.mcool", package = "trackViewer", mustWork=TRUE) importGInteractions(file=cool, format="cool", resolution = 2, ranges=GRanges("chr1", IRanges(10, 28)), out = "GInteractions") ``` Different from most of the available tools, `loopBouquetPlot` try to plot the data with the 2D structure. The nodes indicate the region with interactions and the edges indicates the interactions. The size of the nodes are relative to the width of the region. The features could be the cRE or gene. The cRE are shown as points with symbol 11. ```{r plotGInteractions} library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) library(InteractionSet) gi <- readRDS(system.file("extdata", "gi.rds", package="trackViewer")) range <- GRanges("chr2", IRanges(234300000, 235000000)) gene_hg19 <- suppressMessages(genes(TxDb.Hsapiens.UCSC.hg19.knownGene)) feature.gr <- subsetByOverlaps(gene_hg19, range(regions(gi))) feature.gr$col <- sample(2:7, length(feature.gr), replace=TRUE) feature.gr$type <- sample(c("cRE", "gene"), length(feature.gr), replace=TRUE, prob=c(0.1, 0.9)) symbol <- mget(feature.gr$gene_id, org.Hs.egSYMBOL, ifnotfound = NA) symbol <- unlist(lapply(symbol, function(.ele) .ele[1])) feature.gr$label <- symbol loopBouquetPlot(gi, range, feature.gr) ``` ```{r plotRealData} gi <- readRDS(system.file("extdata", "nij.chr6.51120000.53200000.gi.rds", package="trackViewer")) range <- GRanges("chr6", IRanges(51120000, 53200000)) ## filter the links to simulate the real data keep <- distance(first(gi), second(gi)) > 5e5 & gi$score>35 gi <- gi[keep] # narrow the width of anchors to ehance the plots reg <- regions(gi) wr <- floor(width(reg)/4) start(reg) <- start(reg) + wr end(reg) <- end(reg) - wr regions(gi) <- reg feature.gr <- subsetByOverlaps(gene_hg19, range(regions(gi))) feature.gr$col <- sample(2:7, length(feature.gr), replace=TRUE) feature.gr$type <- sample(c("cRE", "gene"), length(feature.gr), replace=TRUE, prob=c(0.1, 0.9)) symbol <- mget(feature.gr$gene_id, org.Hs.egSYMBOL, ifnotfound = NA) symbol <- unlist(lapply(symbol, function(.ele) .ele[1])) feature.gr$label <- symbol feature.gr <- c(feature.gr[sample(seq_along(feature.gr), 5)], feature.gr[feature.gr$type=='cRE'][1]) feature.gr <- unique(sort(feature.gr)) loopBouquetPlot(gi, range, feature.gr, coor_tick_unit = 5e4, coor_mark_interval = 5e5, atacSig = ctcf) ``` # Session Info ```{r sessionInfo, results='asis'} sessionInfo() ```