## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = TRUE ) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # if (!require("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("epiregulon") # ## ----setup, message=FALSE, eval=FALSE----------------------------------------- # devtools::install_github(repo ='xiaosaiyao/epiregulon') ## ----------------------------------------------------------------------------- library(epiregulon) ## ----------------------------------------------------------------------------- # load the MAE object library(scMultiome) mae <- scMultiome::reprogramSeq() # extract peak matrix PeakMatrix <- mae[["PeakMatrix"]] # extract expression matrix GeneExpressionMatrix <- mae[["GeneExpressionMatrix"]] rownames(GeneExpressionMatrix) <- rowData(GeneExpressionMatrix)$name # define the order of hash_assigment GeneExpressionMatrix$hash_assignment <- factor(as.character(GeneExpressionMatrix$hash_assignment), levels = c("HTO10_GATA6_UTR", "HTO2_GATA6_v2", "HTO8_NKX2.1_UTR", "HTO3_NKX2.1_v2", "HTO1_FOXA2_v2", "HTO4_mFOXA1_v2", "HTO6_hFOXA1_UTR", "HTO5_NeonG_v2")) # extract dimensional reduction matrix reducedDimMatrix <- reducedDim(mae[['TileMatrix500']], "LSI_ATAC") # transfer UMAP_combined from TileMatrix to GeneExpressionMatrix reducedDim(GeneExpressionMatrix, "UMAP_Combined") <- reducedDim(mae[['TileMatrix500']], "UMAP_Combined") ## ----------------------------------------------------------------------------- scater::plotReducedDim(GeneExpressionMatrix, dimred = "UMAP_Combined", text_by = "Clusters", colour_by = "Clusters") ## ----getTFMotifInfo----------------------------------------------------------- grl <- getTFMotifInfo(genome = "hg38") grl ## ----eval=FALSE--------------------------------------------------------------- # grl.motif <- getTFMotifInfo(genome = "hg38", # mode = "motif", # peaks = rowRanges(PeakMatrix)) ## ----calculateP2G------------------------------------------------------------- set.seed(1010) p2g <- calculateP2G(peakMatrix = PeakMatrix, expMatrix = GeneExpressionMatrix, reducedDim = reducedDimMatrix, exp_assay = "normalizedCounts", peak_assay = "counts") p2g ## ----addTFMotifInfo----------------------------------------------------------- overlap <- addTFMotifInfo(grl = grl, p2g = p2g, peakMatrix = PeakMatrix) head(overlap) ## ----warning=FALSE, getRegulon------------------------------------------------ regulon <- getRegulon(p2g = p2g, overlap = overlap, aggregate = FALSE) regulon ## ----network pruning, results = "hide", message = FALSE----------------------- pruned.regulon <- pruneRegulon(expMatrix = GeneExpressionMatrix, exp_assay = "normalizedCounts", peakMatrix = PeakMatrix, peak_assay = "counts", test = "chi.sq", regulon = regulon[regulon$tf %in% c("NKX2-1","GATA6","FOXA1","FOXA2", "AR"),], clusters = GeneExpressionMatrix$Clusters, prune_value = "pval", regulon_cutoff = 0.05 ) pruned.regulon ## ----addWeights, results = "hide", warning = FALSE, message = FALSE----------- regulon.w <- addWeights(regulon = pruned.regulon, expMatrix = GeneExpressionMatrix, exp_assay = "normalizedCounts", peakMatrix = PeakMatrix, peak_assay = "counts", clusters = GeneExpressionMatrix$Clusters, method = "wilcox") regulon.w ## ----addMotifScore------------------------------------------------------------ regulon.w.motif <- addMotifScore(regulon = regulon.w, peaks = rowRanges(PeakMatrix), species = "human", genome = "hg38") # if desired, set weight to 0 if no motif is found regulon.w.motif$weight[regulon.w.motif$motif == 0] <- 0 regulon.w.motif ## ----add logFC---------------------------------------------------------------- regulon.w <- addLogFC(regulon = regulon.w, clusters = GeneExpressionMatrix$hash_assignment, expMatrix = GeneExpressionMatrix, assay.type = "normalizedCounts", pval.type = "any", logFC_condition = c("HTO10_GATA6_UTR", "HTO2_GATA6_v2", "HTO8_NKX2.1_UTR"), logFC_ref = "HTO5_NeonG_v2") regulon.w ## ----calculateActivity-------------------------------------------------------- score.combine <- calculateActivity(expMatrix = GeneExpressionMatrix, regulon = regulon.w, mode = "weight", method = "weightedMean", exp_assay = "normalizedCounts", normalize = FALSE) score.combine[1:5,1:5] ## ----------------------------------------------------------------------------- sessionInfo()