GenomicDataCommons
?From https://support.bioconductor.org/p/9138939/.
library(GenomicDataCommons,quietly = TRUE)
I made a small change to the filtering expression approach based on
changes to lazy evaluation best practices. There is now no need to
include the ~
in the filter expression. So:
q = files() %>%
GenomicDataCommons::filter(
cases.project.project_id == 'TCGA-COAD' &
data_type == 'Aligned Reads' &
experimental_strategy == 'RNA-Seq' &
data_format == 'BAM')
And get a count of the results:
count(q)
## [1] 1188
And the manifest.
manifest(q)
id <chr> | data_format <chr> | access <chr> | |
---|---|---|---|
b5b03243-3074-4db1-b22e-15d14e790f57 | BAM | controlled | |
fb0ea225-1004-412e-892a-f01dc9d14581 | BAM | controlled | |
87da2a2a-586e-4797-9d2a-4f423a4e3641 | BAM | controlled | |
79126fea-a11b-4410-9e74-60e333eee910 | BAM | controlled | |
c91e5d6c-5a2f-4f74-91a9-a36d5656dcb4 | BAM | controlled | |
8cd0db1a-c53e-4f34-ab17-e1cd97477868 | BAM | controlled | |
6f478235-d73c-45dc-935d-fc934206fa36 | BAM | controlled | |
6d0b8cc5-da52-42b1-9b5b-0aee1dbca1ba | BAM | controlled | |
085a55a1-98f5-42ab-b7f7-9793a2df3991 | BAM | controlled | |
fa292a95-d125-4c4f-bf88-a066d31fea74 | BAM | controlled |
Your question about race and ethnicity is a good one.
all_fields = available_fields(files())
And we can grep for race
or ethnic
to get potential matching fields
to look at.
grep('race|ethnic',all_fields,value=TRUE)
## [1] "cases.demographic.ethnicity"
## [2] "cases.demographic.race"
## [3] "cases.follow_ups.hormonal_contraceptive_type"
## [4] "cases.follow_ups.hormonal_contraceptive_use"
## [5] "cases.follow_ups.other_clinical_attributes.hormonal_contraceptive_type"
## [6] "cases.follow_ups.other_clinical_attributes.hormonal_contraceptive_use"
## [7] "cases.follow_ups.scan_tracer_used"
Now, we can check available values for each field to determine how to complete our filter expressions.
available_values('files',"cases.demographic.ethnicity")
## [1] "not hispanic or latino" "not reported" "hispanic or latino"
## [4] "unknown" "_missing"
available_values('files',"cases.demographic.race")
## [1] "white"
## [2] "not reported"
## [3] "black or african american"
## [4] "asian"
## [5] "unknown"
## [6] "other"
## [7] "american indian or alaska native"
## [8] "native hawaiian or other pacific islander"
## [9] "not allowed to collect"
## [10] "_missing"
We can complete our filter expression now to limit to white
race only.
q_white_only = q %>%
GenomicDataCommons::filter(cases.demographic.race=='white')
count(q_white_only)
## [1] 695
manifest(q_white_only)
id <chr> | data_format <chr> | access <chr> | |
---|---|---|---|
fb0ea225-1004-412e-892a-f01dc9d14581 | BAM | controlled | |
79126fea-a11b-4410-9e74-60e333eee910 | BAM | controlled | |
8cd0db1a-c53e-4f34-ab17-e1cd97477868 | BAM | controlled | |
fa292a95-d125-4c4f-bf88-a066d31fea74 | BAM | controlled | |
48aab61e-8550-4698-9c0f-9db6c0c92793 | BAM | controlled | |
d0a01deb-187c-4fd0-9e4c-c9149ac7f1b4 | BAM | controlled | |
c2962006-6ad5-4fe6-8a5a-1c8eb9fad90c | BAM | controlled | |
85535fab-ba49-4b3e-b372-08c15a997042 | BAM | controlled | |
5598442c-f6a5-4bc0-b7cb-4176f5318313 | BAM | controlled | |
3f50c43c-1a61-4e36-a23b-aa9c9b106102 | BAM | controlled |
GenomicDataCommons
?I would like to get the number of cases added (created, any logical datetime would suffice here) to the TCGA project by experiment type. I attempted to get this data via GenomicDataCommons package, but it is giving me I believe the number of files for a given experiment type rather than number cases. How can I get the number of cases for which there is RNA-Seq data?
library(tibble)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:GenomicDataCommons':
##
## count, filter, select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(GenomicDataCommons)
cases() %>%
GenomicDataCommons::filter(~ project.program.name=='TCGA' &
files.experimental_strategy=='RNA-Seq') %>%
facet(c("files.created_datetime")) %>%
aggregations() %>%
.[[1]] %>%
as_tibble() %>%
dplyr::arrange(dplyr::desc(key))
doc_count <int> | key <chr> | |||
---|---|---|---|---|
164 | 2024-06-14t14:27:00.916424-05:00 | |||
412 | 2024-06-14t13:28:10.644120-05:00 | |||
151 | 2023-03-09t00:35:51.387873-06:00 | |||
79 | 2023-02-19t04:41:11.008116-06:00 | |||
458 | 2023-02-19t04:36:10.605050-06:00 | |||
80 | 2023-02-19t04:28:49.400023-06:00 | |||
178 | 2023-02-19t04:23:49.092629-06:00 | |||
516 | 2023-02-19t04:18:49.453628-06:00 | |||
179 | 2023-02-19t04:13:47.877168-06:00 | |||
290 | 2023-02-19t04:08:47.478925-06:00 |