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Description

mia implements tools for microbiome analysis based on the SummarizedExperiment, SingleCellExperiment
and TreeSummarizedExperiment infrastructure. Data wrangling and analysis in the context of tax-

onomic data is the main scope. Additional functions for common task are implemented such as
community indices calculation and summarization.

Author(s)

Maintainer: Tuomas Borman <tuomas.v.borman@utu. fi> (ORCID)

Authors:

¢ Felix G.M. Ernst <felix.gm.ernst@outlook.com> (ORCID)
* Sudarshan A. Shetty <sudarshanshetty9@gmail.com> (ORCID)
e Leo Lahti <leo.lahti@iki.fi> (ORCID)

Other contributors:
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¢ Levi Waldron [contributor]

e Marcel Ramos [contributor]

e Héctor Corrada Bravo [contributor]

* Jayaram Kancherla [contributor]

¢ Domenick Braccia <dbraccia@umd. edu> [contributor]
* Basil Courbayre [contributor]

e Muluh Muluh [contributor]

See Also

TreeSummarizedExperiment

addCluster Clustering wrapper

Description

This function returns a SummarizedExperiment with clustering information in its colData or row-
Data

Usage
addCluster(
X7
BLUSPARAM,
assay.type = assay_name,
assay_name = "counts"”,
MARGIN = "features”,
full = FALSE,
name = "clusters”,
clust.col = "clusters”,
)
## S4 method for signature 'SummarizedExperiment'’
addCluster(
X,
BLUSPARAM,
assay.type = assay_name,
assay_name = "counts”,
MARGIN = "features”,
full = FALSE,
name = "clusters”,
clust.col = "clusters”,



addCluster

Arguments

X
BLUSPARAM
assay. type
assay_name

MARGIN

full

name

clust.col

Details

A SummarizedExperiment object.
A BlusterParam object specifying the algorithm to use.
a single character value for specifying which assay to use for calculation.

a single character value for specifying which assay to use for calculation.
(Please use assay. type instead. At some point assay_name will be disabled.)

A single character value for specifying whether the transformation is applied
sample (column) or feature (row) wise. (By default: MARGIN = "samples”)

Logical scalar indicating whether the full clustering statistics should be returned
for each method.

the name to store the result in metadata

A single character value indicating the name of the rowData (or colData) where
the data will be stored.

Additional parameters to use altExps for example

This is a wrapper for the clusterRows function from the bluster package.

When setting full = TRUE, the clustering information will be stored in the metadata of the object.

By default, clustering is done on the features.

Value

addCluster returns an object of the same type as the x parameter with clustering information
named clusters stored in colData or rowData.

Author(s)

Basil Courbayre

Examples

library(bluster)

data(GlobalPatterns, package = "mia")
tse <- GlobalPatterns

# Cluster on rows using Kmeans
tse <- addCluster(tse, KmeansParam(centers = 3))

# Clustering done on the samples using Hclust
tse <- addCluster(tse,

MARGIN = "samples”,
HclustParam(metric = "bray”, dist.fun = vegan::vegdist))

# Getting the clusters
colData(tse)$clusters
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addDivergence Estimate divergence

Description

Estimate divergence against a given reference sample.

Usage
addDivergence(
X’
assay.type = assay_name,
assay_name = "counts”,
name = "divergence”,
reference = "median”,

FUN = vegan::vegdist,
method = "bray”,

## S4 method for signature 'SummarizedExperiment'
addDivergence(

X,

assay.type = assay_name,

assay_name = "counts”,

name = "divergence”,

reference = "median”,

FUN = vegan::vegdist,

method = "bray”,

)
Arguments

X a SummarizedExperiment object.

assay. type the name of the assay used for calculation of the sample-wise estimates.

assay_name a single character value for specifying which assay to use for calculation.
(Please use assay. type instead. At some point assay_name will be disabled.)

name a name for the column of the colData the results should be stored in. By default,
name is "divergence"”.

reference a numeric vector that has length equal to number of features, or a non-empty
character value; either 'median’ or 'mean’. reference specifies the reference
that is used to calculate divergence. by default, reference is "median”.

FUN a function for distance calculation. The function must expect the input matrix

as its first argument. With rows as samples and columns as features. By default,
FUN is vegan: : vegdist.
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method a method that is used to calculate the distance. Method is passed to the function
that is specified by FUN. By default, method is "bray".

optional arguments

Details

Microbiota divergence (heterogeneity / spread) within a given sample set can be quantified by the
average sample dissimilarity or beta diversity with respect to a given reference sample.

This measure is sensitive to sample size. Subsampling or bootstrapping can be applied to equalize
sample sizes between comparisons.

Value

x with additional colData named *namex*

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

See Also
plotColData

e estimateRichness
e estimateEvenness

e estimateDominance

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

# By default, reference is median of all samples. The name of column where results
# is "divergence"” by default, but it can be specified.
tse <- addDivergence(tse)

# The method that are used to calculate distance in divergence and
# reference can be specified. Here, euclidean distance and dist function from
# stats package are used. Reference is the first sample.
tse <- addDivergence(tse, name = "divergence_first_sample”,
reference = assays(tse)$counts[,1],
FUN = stats::dist, method = "euclidean"”)

# Reference can also be median or mean of all samples.
# By default, divergence is calculated by using median. Here, mean is used.
tse <- addDivergence(tse, name = "divergence_average", reference = "mean”)

# All three divergence results are stored in colData.
colData(tse)


microbiome.github.io

agglomerate-methods

agglomerate-methods

Agglomerate data using taxonomic information

Description

Agglomeration functions can be used to sum-up data based on specific criteria such as taxonomic
ranks, variables or prevalence.

Usage

agglomerateByRank(x, ...)

mergeFeaturesByRank(x, ...)

## S4 method for signature 'SummarizedExperiment'’
agglomerateByRank (

X’

rank = taxonomyRanks(x)[1],
onRankOnly = FALSE,

na.rm = FALSE,

empty'fields = C(NA’ IIH’ n ”’ H\tll’ H_ll, Il_”),
)
## S4 method for signature 'SummarizedExperiment'’
mergeFeaturesByRank(

X)

)

rank = taxonomyRanks(x)[1],

onRankOnly = FALSE,

na.rm = FALSE,

empty.fields = c(NA, "", " ", "\t", "=-", "_"),

## S4 method for signature 'SingleCellExperiment'’

agglomerateByRank(x,

## S4 method for signature 'SingleCellExperiment’

mergeFeaturesByRank(x,

## S4 method for signature 'TreeSummarizedExperiment'’

agglomerateByRank (

)

X)
agglomerate.tree = agglomerateTree,
agglomerateTree = FALSE

., altexp = NULL, strip_altexp = TRUE)

., altexp = NULL, strip_altexp = TRUE)
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## S4 method for signature 'TreeSummarizedExperiment'’
mergeFeaturesByRank(x, ..., agglomerate.tree = FALSE)

agglomerateByPrevalence(x, ...)

## S4 method for signature 'SummarizedExperiment'’
agglomerateByPrevalence(

X)

rank = taxonomyRanks(x)[1L],
other_label = "Other”,

Arguments

X

rank

onRankOnly

na.rm

empty.fields

altexp

a SummarizedExperiment object

arguments passed to agglomerateByRank function for SummarizedExperiment
objects, to getPrevalence and getPrevalentTaxa and used in agglomeratebyPrevalence,
to mergeRows and sumCountsAcrossFeatures.

* remove_empty_ranksA single boolean value for selecting whether to re-
move those columns of rowData that include only NAs after agglomeration.
(By default: remove_empty_ranks = FALSE)

* make_uniqueA single boolean value for selecting whether to make row-
names unique. (By default: make_unique = TRUE)

* detectionDetection threshold for absence/presence. FEither an absolute
value compared directly to the values of x or a relative value between 0 and
1,if as_relative = FALSE.

* prevalencePrevalence threshold (in O to 1). The required prevalence is
strictly greater by default. To include the limit, set include_lowest to
TRUE.

* as.relativelLogical scalar: Should the detection threshold be applied on
compositional (relative) abundances? (default: FALSE)

a single character defining a taxonomic rank. Must be a value of taxonomyRanks ()
function.

TRUE or FALSE: Should information only from the specified rank be used or from
ranks equal and above? See details. (default: onRankOnly = FALSE)

TRUE or FALSE: Should taxa with an empty rank be removed? Use it with cau-
tion, since empty entries on the selected rank will be dropped. This setting can
be tweaked by defining empty.fields to your needs. (default: na.rm = TRUE)

a character value defining, which values should be regarded as empty. (De-
fault: c(NA, "", " ", "\t")). They will be removed if na.rm = TRUE before
agglomeration.

String or integer scalar specifying an alternative experiment containing the input
data.
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strip_altexp  TRUE or FALSE: Should alternative experiments be removed prior to agglomera-
tion? This prevents to many nested alternative experiments by default (default:
strip_altexp = TRUE)

agglomerate.tree
TRUE or FALSE: should rowTree () also be agglomerated? (Default: agglomerate.tree
= FALSE)

agglomerateTree
alias for agglomerate. tree.

other_label A single character valued used as the label for the summary of non-prevalent
taxa. (default: other_label = "Other")

Details

Depending on the available taxonomic data and its structure, setting onRankOnly = TRUE has certain
implications on the interpretability of your results. If no loops exist (loops meaning two higher ranks
containing the same lower rank), the results should be comparable. You can check for loops using
detectLoop.

Agglomeration sums up the values of assays at the specified taxonomic level. With certain assays,
e.g. those that include binary or negative values, this summing can produce meaningless values. In
those cases, consider performing agglomeration first, and then applying the transformation after-
wards.

agglomerateByPrevalence sums up the values of assays at the taxonomic level specified by rank
(by default the highest taxonomic level available) and selects the summed results that exceed the
given population prevalence at the given detection level. The other summed values (below the
threshold) are agglomerated in an additional row taking the name indicated by other_label (by
default "Other").

Value

agglomerateByRank returns a taxonomically-agglomerated, optionally-pruned object of the same
class as x.

agglomerateByPrevalence returns a taxonomically-agglomerated object of the same class as x
and based on prevalent taxonomic results.

See Also

mergeRows, sumCountsAcrossFeatures

Examples

data(GlobalPatterns)

# print the available taxonomic ranks
colnames(rowData(GlobalPatterns))
taxonomyRanks (GlobalPatterns)

# agglomerate at the Family taxonomic rank

x1 <- agglomerateByRank(GlobalPatterns, rank="Family")
## How many taxa before/after agglomeration?
nrow(GlobalPatterns)
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nrow(x1)

# agglomerate the tree as well

x2 <- agglomerateByRank(GlobalPatterns, rank="Family",
agglomerate.tree = TRUE)

nrow(x2) # same number of rows, but

rowTree(x1) # ... different

rowTree(x2) # ... tree

# If assay contains binary or negative values, summing might lead to meaningless
# values, and you will get a warning. In these cases, you might want to do

# agglomeration again at chosen taxonomic level.

tse <- transformAssay(GlobalPatterns, method = "pa")

tse <- agglomerateByRank(tse, rank = "Genus")

tse <- transformAssay(tse, method = "pa")

# removing empty labels by setting na.rm = TRUE
sum(is.na(rowData(GlobalPatterns)$Family))

x3 <- agglomerateByRank(GlobalPatterns, rank="Family"”, na.rm = TRUE)
nrow(x3) # different from x2

# Because all the rownames are from the same rank, rownames do not include
# prefixes, in this case "Family:".
print(rownames(x3[1:3,1))

# To add them, use getTaxonomylLabels function.
rownames(x3) <- getTaxonomylLabels(x3, with_rank = TRUE)
print(rownames(x3[1:3,]))

# use 'remove_empty_ranks' to remove columns that include only NAs
x4 <- agglomerateByRank(GlobalPatterns, rank="Phylum”, remove_empty_ranks = TRUE)
head(rowData(x4))

# If the assay contains NAs, you might want to consider replacing them,
# since summing-up NAs lead to NA

x5 <- GlobalPatterns

# Replace first value with NA

assay(x5)[1,1] <- NA

x6 <- agglomerateByRank(x5, "Kingdom")

head( assay(x6) )

# Replace NAs with @. This is justified when we are summing-up counts.
assay(x5)[ is.na(assay(x5)) 1 <- 0

x6 <- agglomerateByRank(x5, "Kingdom")

head( assay(x6) )

## Look at enterotype dataset...

data(enterotype)

## Print the available taxonomic ranks. Shows only 1 available rank,
## not useful for agglomerateByRank

taxonomyRanks(enterotype)

## Data can be aggregated based on prevalent taxonomic results

tse <- GlobalPatterns

tse <- agglomerateByPrevalence(tse,

11
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rank = "Phylum”,
detection = 1/100,
prevalence = 50/100,
as_relative = TRUE)

tse

# Here data is aggregated at the taxonomic level "Phylum”. The five phyla

# that exceed the population prevalence threshold of 50/100 represent the

# five first rows of the assay in the aggregated data. The sixth and last row
# named by default "Other" takes the summed up values of all the other phyla
# that are below the prevalence threshold.

assay(tse)[,1:5]

calculateDMN Dirichlet-Multinomial Mixture Model: Machine Learning for Micro-
biome Data

Description

These functions are accessors for functions implemented in the DirichletMultinomial package

Usage

calculateDMN(x, ...)

## S4 method for signature 'ANY'

calculateDMN(
X)
k=1,

BPPARAM = SerialParam(),
seed = runif(1, @, .Machine$integer.max),

## S4 method for signature 'SummarizedExperiment
calculateDMN(

X,

assay.type = assay_name,

assay_name = exprs_values,

exprs_values = "counts”,

transposed = FALSE,

runDMN(x, name = "DMN", ...)
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getDMN(x, name = "DMN", ...)

## S4 method for signature 'SummarizedExperiment'’
getDMN(x, name = "DMN")

bestDMNFit(x, name = "DMN”, type = c("laplace”, "AIC", "BIC"),

## S4 method for signature 'SummarizedExperiment'’
bestDMNFit(x, name = "DMN", type = c("laplace”, "AIC", "BIC"))

getBestDMNFit(x, name = "DMN", type = c("laplace”, "AIC", "BIC"),

## S4 method for signature 'SummarizedExperiment'’
getBestDMNFit(x, name = "DMN", type = c("laplace”, "AIC"”, "BIC"))

calculateDMNgroup(x, ...)

## S4 method for signature 'ANY'
calculateDMNgroup(

X,

variable,

k =1,

seed = runif(1, @, .Machine$integer.max),

)

## S4 method for signature 'SummarizedExperiment'
calculateDMNgroup(

X,

variable,

assay.type = assay_name,

assay_name = exprs_values,

exprs_values = "counts”,

transposed = FALSE,

)

performbDMNgroupCV(x, ...)

## S4 method for signature 'ANY'
performDMNgroupCV(

X,

variable,

k =1,

seed = runif(1, @, .Machine$integer.max),

13
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## S4 method for signature 'SummarizedExperiment'

exprs_values

performDMNgroupCV (
X ’
variable,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts”,
transposed = FALSE,
Arguments
X a numeric matrix with samples as rows or a SummarizedExperiment object.
optional arguments not used.
k the number of Dirichlet components to fit. See dmn
BPPARAM A BiocParallelParamobject specifying whether the UniFrac calculation should
be parallelized.
seed random number seed. See dmn
assay.type a single character value for specifying which assay to use for calculation.
assay_name a single character value for specifying which assay to use for calculation.

(Please use assay. type instead. At some point assay_name will be disabled.)

a single character value for specifying which assay to use for calculation.
(Please use assay. type instead.)

transposed Logical scalar, is x transposed with samples in rows?
name the name to store the result in metadata
type the type of measure used for the goodness of fit. One of ‘laplace’, ‘AIC’ or
‘BIC’.
variable a variable from colData to use as a grouping variable. Must be a character of
factor.
Value

calculateDMN and getDMN return a list of DMN objects, one element for each value of k provided.

bestDMNFit returns the index for the best fit and getBestDMNFit returns a single DMN object.

calculateDMNgroup returns a DMNGroup object

performDMNgroupCV returns a data. frame

See Also

DMN-class, DMNGroup-class, dmn, dmngroup, cvdmngroup , accessors for DMN objects
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Examples

fl <- system.file(package="DirichletMultinomial”, "extdata”, "Twins.csv")
counts <- as.matrix(read.csv(fl, row.names=1))

fl <- system.file(package="DirichletMultinomial”, "extdata”, "TwinStudy.t")
pheno® <- scan(fl)

lvls <- c("Lean"”, "Obese", "Overwt")

pheno <- factor(lvls[pheno® + 1], levels=lvls)

colData <- DataFrame(pheno = pheno)

tse <- TreeSummarizedExperiment(assays = list(counts = counts),
colData = colData)

library(bluster)

# Compute DMM algorithm and store result in metadata
tse <- cluster(tse, name = "DMM", DmmParam(k = 1:3, type = "laplace"),
MARGIN = "samples”, full = TRUE)

# Get the list of DMN objects
metadata(tse)$DMM$dmm

# Get and display which objects fits best
bestFit <- metadata(tse)$DMM$best
bestFit

# Get the model that generated the best fit
bestModel <- metadata(tse)$DMM$dmm[[bestFit]]
bestModel

# Get the sample-cluster assignment probability matrix
head(metadata(tse)$DMM$prob)

# Get the weight of each component for the best model
bestModel@mixture$Weight

calculateJSD Calculate the Jensen-Shannon Divergence

Description

This function calculates the Jensen-Shannon Divergence (JSD) in a SummarizedExperiment object.

Usage
## S4 method for signature 'ANY'
calculateJSD(x, ...)

## S4 method for signature 'SummarizedExperiment'’
calculateJSD(
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X,

assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts”,
transposed = FALSE,

)

runJSD(x, BPPARAM = SerialParam(), chunkSize = nrow(x))

Arguments
X a numeric matrix or a SummarizedExperiment.
optional arguments not used.
assay.type a single character value for specifying which assay to use for calculation.
assay_name a single character value for specifying which assay to use for calculation.

(Please use assay. type instead. At some point assay_name will be disabled.)

exprs_values a single character value for specifying which assay to use for calculation.
(Please use assay. type instead.)

transposed Logical scalar, is x transposed with cells in rows?
BPPARAM A BiocParallelParam object specifying whether the JSD calculation should
be parallelized.
chunkSize an integer scalar, defining the size of data send to the individual worker. Only
has an effect, if BPPARAM defines more than one worker. (default: chunkSize =
nrow(x))
Value

a sample-by-sample distance matrix, suitable for NMDS, etc.

Author(s)

Susan Holmes <susan@stat.stanford. edu>. Adapted for phyloseq by Paul J. McMurdie. Adapted
for mia by Felix G.M. Ernst

References

Jensen-Shannon Divergence and Hilbert space embedding. Bent Fuglede and Flemming Top-
soe University of Copenhagen, Department of Mathematics http://www.math.ku.dk/~topsoe/
ISIT2004JSD.pdf

See Also

http://en.wikipedia.org/wiki/Jensen-Shannon_divergence
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http://en.wikipedia.org/wiki/Jensen-Shannon_divergence
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Examples

data(enterotype)
library(scater)

jsd <- calculateJSD(enterotype)
class(jsd)
head(jsd)

enterotype <- runMDS(enterotype, FUN = calculateJSD, name = "JSD",
exprs_values = "counts")
head(reducedDim(enterotype))
head(attr(reducedDim(enterotype), "eig"))
attr(reducedDim(enterotype), "GOF")

calculateOverlap Estimate overlap

Description

This function calculates overlap for all sample-pairs in a SummarizedExperiment object.

Usage
calculateOverlap(
X’
assay.type = assay_name,
assay_name = "counts"”,

detection = 0,

## S4 method for signature 'SummarizedExperiment'’
calculateOverlap(

X,

assay.type = assay_name,

assay_name = "counts”,

detection = 0,

runOverlap(x, ...)

## S4 method for signature 'SummarizedExperiment'’
runOverlap(x, name = "overlap”, ...)
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Arguments
X a SummarizedExperiment object containing a tree.
assay. type A single character value for selecting the assay to calculate the overlap.
assay_name a single character value for specifying which assay to use for calculation.
(Please use assay. type instead. At some point assay_name will be disabled.)
detection A single numeric value for selecting detection threshold for absence/presence of
features. Feature that has abundance under threshold in either of samples, will
be discarded when evaluating overlap between samples.
Optional arguments not used.
name A single character value specifying the name of overlap matrix that is stored in
reducedDim(x).
Details

These function calculates overlap between all the sample-pairs. Overlap reflects similarity between
sample-pairs.

When overlap is calculated using relative abundances, the higher the value the higher the similar-
ity is, When using relative abundances, overlap value 1 means that all the abundances of features
are equal between two samples, and 0 means that samples have completely different relative abun-
dances.

Value

calculateOverlap returns sample-by-sample distance matrix. runOverlap returns x that includes
overlap matrix in its reducedDim.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

See Also

calculateJSD calculateUnifrac

Examples

data(esophagus)

tse <- esophagus

tse <- transformAssay(tse, method = "relabundance”)

overlap <- calculateOverlap(tse, assay_name = "relabundance")
overlap

# Store result to reducedDim
tse <- runOverlap(tse, assay.type = "relabundance”, name = "overlap_between_samples”)
head(reducedDims(tse)$overlap_between_samples)


microbiome.github.io
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calculateUnifrac Calculate weighted or unweighted (Fast) Unifrac distance

Description

This function calculates the (Fast) Unifrac distance for all sample-pairs in a TreeSummarizedExperiment
object.

Usage

calculateUnifrac(x, tree, ...)

## S4 method for signature 'ANY,phylo'
calculateUnifrac(

X,

tree,

weighted = FALSE,

normalized = TRUE,

BPPARAM = SerialParam(),

)

## S4 method for signature 'TreeSummarizedExperiment,missing'
calculateUnifrac(

X,

assay.type = assay_name,

assay_name = exprs_values,

exprs_values = "counts”,

tree_name = "phylo”,

transposed = FALSE,

)

runUnifrac(
X,
tree,
weighted = FALSE,
normalized = TRUE,
nodeLab = NULL,
BPPARAM = SerialParam(),

Arguments

X a numeric matrix or a TreeSummarizedExperiment object containing a tree.
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tree

weighted

normalized

BPPARAM

assay. type

assay_name

exprs_values

tree_name

transposed

nodelLab

Details

calculateUnifrac

Please note that runUnifrac expects a matrix with samples per row and not per
column. This is implemented to be compatible with other distance calculations
such as dist as much as possible.

if x is a matrix, a phylo object matching the matrix. This means that the phylo
object and the columns should relate to the same type of features (aka. microor-
ganisms).

optional arguments not used.

TRUE or FALSE: Should use weighted-Unifrac calculation? Weighted-Unifrac
takes into account the relative abundance of species/taxa shared between sam-
ples, whereas unweighted-Unifrac only considers presence/absence. Default is
FALSE, meaning the unweighted-Unifrac distance is calculated for all pairs of
samples.

TRUE or FALSE: Should the output be normalized such that values range from 0 to
1 independent of branch length values? Default is TRUE. Note that (unweighted)
Unifrac is always normalized by total branch-length, and so this value is ig-
nored when weighted == FALSE.

A BiocParallelParamobject specifying whether the Unifrac calculation should
be parallelized.

a single character value for specifying which assay to use for calculation.

a single character value for specifying which assay to use for calculation.
(Please use assay . type instead. At some point assay_name will be disabled.)

a single character value for specifying which assay to use for calculation.
(Please use assay . type instead.)

a single character value for specifying which tree will be used in calculation.
(By default: tree_name = "phylo")

Logical scalar, is x transposed with cells in rows, i.e., is Unifrac distance calcu-
lated based on rows (FALSE) or columns (TRUE). (By default: transposed =
FALSE)

if x is a matrix, a character vector specifying links between rows/columns
and tips of tree. The length must equal the number of rows/columns of x.
Furthermore, all the node labs must be present in tree.

Please note that if calculateUnifrac is used as a FUN for runMDS, the argument ntop has to be set

to nrow(x).

Value

a sample-by-sample distance matrix, suitable for NMDS, etc.

Author(s)

Paul J. McMurdie. Adapted for mia by Felix G.M. Ernst
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References

http://bmf.colorado.edu/unifrac/
The main implementation (Fast Unifrac) is adapted from the algorithm’s description in:

Hamady, Lozupone, and Knight, “Fast UniFrac: facilitating high-throughput phylogenetic analyses
of microbial communities including analysis of pyrosequencing and PhyloChip data.” The ISME
Journal (2010) 4, 17-27.

See also additional descriptions of Unifrac in the following articles:

Lozupone, Hamady and Knight, “Unifrac - An Online Tool for Comparing Microbial Community
Diversity in a Phylogenetic Context.”, BMC Bioinformatics 2006, 7:371

Lozupone, Hamady, Kelley and Knight, “Quantitative and qualitative (beta) diversity measures lead

to different insights into factors that structure microbial communities.” Appl Environ Microbiol.
2007

Lozupone C, Knight R. “Unifrac: a new phylogenetic method for comparing microbial communi-
ties.” Appl Environ Microbiol. 2005 71 (12):8228-35.

Examples

data(esophagus)

library(scater)

calculateUnifrac(esophagus, weighted = FALSE)

calculateUnifrac(esophagus, weighted = TRUE)

calculateUnifrac(esophagus, weighted = TRUE, normalized = FALSE)

# for using calculateUnifrac in conjunction with runMDS the tree argument
# has to be given separately. In addition, subsetting using ntop must

# be disabled

esophagus <- runMDS(esophagus, FUN = calculateUnifrac, name = "Unifrac”,
tree = rowTree(esophagus),
exprs_values = "counts”,

ntop = nrow(esophagus))
reducedDim(esophagus)

deprecate These functions will be deprecated. Please use other functions instead.

Description

These functions will be deprecated. Please use other functions instead.

Usage

cluster(x, ...)

## S4 method for signature 'SummarizedExperiment'’
cluster(x, ...)

addTaxonomyTree(x, ...)


http://bmf.colorado.edu/unifrac/
http://www.nature.com/ismej/journal/v4/n1/full/ismej200997a.html
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## S4 method for signature 'SummarizedExperiment'
addTaxonomyTree(x, ...)

taxonomyTree(x, ...)

## S4 method for signature 'SummarizedExperiment'
taxonomyTree(x, ...)

mergeFeaturesByPrevalence(x, ...)

## S4 method for signature 'SummarizedExperiment'
mergeFeaturesByPrevalence(x, ...)

loadFromBiom(...)
loadFromQIIME2(...)
readQzA(...)
loadFromMothur(...)
loadFromMetaphlan(...)
loadFromHumann(...)
full_join(x, ...)

## S4 method for signature 'ANY'
full_join(x, ...)

inner_join(x, ...)

## S4 method for signature 'ANY'
inner_join(x, ...)

left_join(x, ...)

## S4 method for signature 'ANY'
left_join(x, ...)

right_join(x, ...)

## S4 method for signature 'ANY'
right_join(x, ...)

plotNMDS(x, ...)

deprecate
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estimateDivergence(x, ...)

## S4 method for signature 'SummarizedExperiment'

estimateDivergence(x, ...)
Arguments
X A SummarizedExperiment object.

Additional parameters. See dedicated function.

dmn_se dmn_se

Description

dmn_se is a dataset on twins’ microbiome where samples are stratified by their community compo-
sition through Dirichlet Multinomial Mixtures (DMM). It was derived from the DirichletMultino-
mial package.

Usage

data(dmn_se)

Format

A SummarizedExperiment with 130 features and 278 samples. The rowData contains no taxonomic
information. The colData includes:

pheno participant’s weight condition (Lean, Overwt and Obese)

Author(s)
Turnbaugh, PJ et al.

References

Holmes I, Harris K, Quince C (2012). Dirichlet Multinomial Mixtures: Generative Models for
Microbial Metagenomics. PLoS ONE 7(2): €30126. https://doi.org/10.1371/journal.pone.
0030126

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009). A core gut micro-
biome in obese and lean twins. Nature 457: 480-484. https://doi.org/10.1038/natured7540

See Also

mia-datasets calculateDMN


https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1038/nature07540
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enterotype enterotype

Description

The enterotype data of the human gut microbiome includes taxonomic profiling for 280 fecal sam-
ples from 22 subjects based on shotgun DNA sequencing. The authors claimed that the data nat-
urally clumps into three community-level clusters, or "enterotypes", that are not immediately ex-
plained by sequencing technology or demographic features of the subjects. In a later addendum
from 2014 the authors stated that enterotypes should not be seen as discrete clusters, but as a way
of stratifying samples to reduce complexity. It was converted into a TreeSummarizedExperiment
from the phyloseq package.

Usage

data(enterotype)

Format

A TreeSummarizedExperiment with 553 features and 280 samples. The rowData contains taxo-
nomic information at Genus level. The colData includes:

Enterotype enterotype the sample belongs to (1, 2 and 3)
Sample_ID sample ID of samples from all studies
SeqTech sequencing technology

SampleID sample ID of complete samples

Project original project from which sample was obtained (gill06, turnbaugh09, MetaHIT, Mi-
croObes, MicroAge and kurokawa07)

Nationality participant’s nationality (american, danish, spanish, french, italian and japanese)
Gender participant’s gender (F or M)

Age participant’s age (0.25 — 87)

ClinicalStatus participant’s clinical status (healthy, obese, CD, UC and elderly)

Author(s)

Arumugam, M., Raes, J., et al.

Source

http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html

References

Arumugam, M., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346),
174-180. https://doi.org/10.1038/nature@9944

Arumugam, M., et al. (2014). Addendum: Enterotypes of the human gut microbiome. Nature 506,
516 (2014). https://doi.org/10.1038/nature13075


http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html
https://doi.org/10.1038/nature09944
https://doi.org/10.1038/nature13075
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See Also

mia-datasets

esophagus esophagus

Description

This small dataset from a human esophageal community includes 3 samples from 3 human adults
based on biopsies analysed with 16S rDNA PCR. The 16S rRNA sequence processing is provided
in the mothur wiki from the link below. It was converted into a TreeSummarizedExperiment from
the phyloseq package.

Usage

data(esophagus)

Format

A TreeSummarizedExperiment with 58 features and 3 samples. The rowData contains no taxonomic
information. The colData is empty.

Author(s)

Pei et al. <zhiheng.pei@med.nyu.edu>.

Source

http://www.mothur.org/wiki/Esophageal_community_analysis

References

Pei, Z., Bini, E. J., Yang, L., Zhou, M., Francois, F., & Blaser, M. J. (2004). Bacterial biota in the
human distal esophagus. Proceedings of the National Academy of Sciences of the United States of
America, 101(12), 4250-4255. https://doi.org/10.1073/pnas.0306398101

McMurdie, J. & Holmes, S. (2013) phyloseq: An R Package for reproducible interactive analysis
and graphics of microbiome census data. PLoS ONE. 8(4):e61217. https://doi.org/10.1371/
journal.pone. 0061217

See Also

mia-datasets


http://www.mothur.org/wiki/Esophageal_community_analysis
https://doi.org/10.1073/pnas.0306398101
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217
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estimateDiversity Estimate (alpha) diversity measures

Description

Several functions for calculating (alpha) diversity indices, including the vegan package options and
some others.

Usage

estimateDiversity(
X,
assay.type = "counts”,
assay_name = NULL,
index = c("coverage", "fisher", "gini_simpson”, "inverse_simpson",
"log_modulo_skewness"”, "shannon"),
name = index,

)
## S4 method for signature 'SummarizedExperiment'’
estimateDiversity(
X,
assay.type = "counts”,
assay_name = NULL,
index = c("coverage", "fisher", "gini_simpson”, "inverse_simpson",
"log_modulo_skewness"”, "shannon"),

name = index,

BPPARAM = SerialParam()
)

## S4 method for signature 'TreeSummarizedExperiment'’
estimateDiversity(
X,
assay.type = "counts”,
assay_name = NULL,
index = c("coverage”, "faith"”, "fisher"”, "gini_simpson”, "inverse_simpson”,
"log_modulo_skewness"”, "shannon"),
name = index,
tree_name = "phylo”,

BPPARAM = SerialParam()

estimateFaith(
X,
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tree = "missing”,
assay.type = "counts”,
assay_name = NULL,
name = "faith",
)
## S4 method for signature 'SummarizedExperiment,phylo’
estimateFaith(
X,
tree,
assay.type = "counts”,
assay_name = NULL,
name = "faith",

node_lab = NULL,

)
## S4 method for signature 'TreeSummarizedExperiment,missing’
estimateFaith(
X,
assay.type = "counts”,
assay_name = NULL,
name = "faith”,
tree_name = "phylo”,
)
Arguments
X a SummarizedExperiment object or TreeSummarizedExperiment. The latter is
recommended for microbiome data sets and tree-based alpha diversity indices.
assay. type the name of the assay used for calculation of the sample-wise estimates.
assay_name a single character value for specifying which assay to use for calculation.
(Please use assay. type instead. At some point assay_name will be disabled.)
index a character vector, specifying the diversity measures to be calculated.
name a name for the column(s) of the colData the results should be stored in. By

default this will use the original names of the calculated indices.
optional arguments:

¢ threshold A numeric value in the unit interval, determining the threshold
for coverage index. By default, threshold is 0.9.

* quantile Arithmetic abundance classes are evenly cut up to to this quantile
of the data. The assumption is that abundances higher than this are not
common, and they are classified in their own group. By default, quantile
is 0.5.
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BPPARAM

tree_name

tree

node_lab

Details

estimateDiversity

e num_of_classes The number of arithmetic abundance classes from zero to
the quantile cutoff indicated by quantile. By default, num_of_classes is
50.

* only.tips A boolean value specifying whether to remove internal nodes when
Faith’s index is calculated. When only. tips=TRUE, those rows that are not
tips of tree are removed. (By default: only. tips=FALSE)

A BiocParallelParamobject specifying whether calculation of estimates should
be parallelized.

a single character value for specifying which rowTree will be used to calculate
faith index. (By default: tree_name = "phylo")

A phylogenetic tree that is used to calculate *faith’ index. If x is a TreeSummarizedExperiment,
rowTree(x) is used by default.

NULL or a character vector specifying the links between rows and node labels
of tree. If a certain row is not linked with the tree, missing instance should be
noted as NA. When NULL, all the rownames should be found from the tree. (By
default: node_lab = NULL)

The available indices include the ‘Coverage’, ‘Faith’s phylogenetic diversity’, ‘Fisher alpha’, ‘Gini-
Simpson’, ‘Inverse Simpson’, ‘log-modulo skewness’, and ‘Shannon’ indices. See details for more
information and references.

Alpha diversity is a joint quantity that combines elements or community richness and evenness.
Diversity increases, in general, when species richness or evenness increase.

By default, this function returns all indices.

* ’coverage’ Number of species needed to cover a given fraction of the ecosystem (50 percent
by default). Tune this with the threshold argument.

* ’faith’ Faith’s phylogenetic alpha diversity index measures how long the taxonomic distance
is between taxa that are present in the sample. Larger values represent higher diversity. Using
this index requires rowTree. (Faith 1992)

If the data includes features that are not in tree’s tips but in internal nodes, there are two
options. First, you can keep those features, and prune the tree to match features so that each
tip can be found from the features. Other option is to remove all features that are not tips. (See
only.tips parameter)

* “fisher’ Fisher’s alpha; as implemented in vegan: : fisher.alpha. (Fisher et al. 1943)

* ’gini_simpson’ Gini-Simpson diversity i.e. 1 — lambda, where lambda is the Simpson in-
dex, calculated as the sum of squared relative abundances. This corresponds to the diversity
index ’simpson’ in vegan: :diversity. This is also called Gibbs—Martin, or Blau index in
sociology, psychology and management studies. The Gini-Simpson index (1-lambda) should
not be confused with Simpson’s dominance (lambda), Gini index, or inverse Simpson index

(1/1lambda).

* ’inverse_simpson’ Inverse Simpson diversity: 1/lambda where lambda = sum(p?) and p
refers to relative abundances. This corresponds to the diversity index ’invsimpson’ in ve-
gan::diversity. Don’t confuse this with the closely related Gini-Simpson index
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* ’log_modulo_skewness’ The rarity index characterizes the concentration of species at low
abundance. Here, we use the skewness of the frequency distribution of arithmetic abundance
classes (see Magurran & McGill 2011). These are typically right-skewed; to avoid taking
log of occasional negative skews, we follow Locey & Lennon (2016) and use the log-modulo
transformation that adds a value of one to each measure of skewness to allow logarithmization.

* ’shannon’ Shannon diversity (entropy).

Value

x with additional colData named *namex

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Beisel J-N. et al. (2003) A Comparative Analysis of Diversity Index Sensitivity. Internal Rev. Hy-
drobiol. 88(1):3-15. https://portais.ufg.br/up/202/0/2003-comparative_evennes_index.
pdf

Bulla L. (1994) An index of diversity and its associated diversity measure. Oikos 70:167-171

Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation
61(1):1-10.

Fisher R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species and
the number of individuals in a random sample of animal population. Journal of Animal Ecology 12,
42-58.

Locey K.J. & Lennon J.T. (2016) Scaling laws predict global microbial diversity. PNAS 113(21):5970-
5975.

Magurran A.E., McGill BJ, eds (2011) Biological Diversity: Frontiers in Measurement and Assess-
ment. (Oxford Univ Press, Oxford), Vol 12.

Smith B. & Wilson JB. (1996) A Consumer’s Guide to Diversity Indices. Oikos 76(1):70-82.

See Also

plotColData

e estimateRichness
e estimateEvenness
* estimateDominance
e diversity

* estimateR


microbiome.github.io
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf
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Examples

data(GlobalPatterns)
tse <- GlobalPatterns

# All index names as known by the function

index <- c("shannon”,"gini_simpson”,"inverse_simpson”, "coverage"”, "fisher",
"faith", "log_modulo_skewness")

# Corresponding polished names
name <- c(”Shannon”,"GiniSimpson”,"InverseSimpson", "Coverage", "Fisher"”,
"Faith"”, "LogModSkewness")

# Calculate diversities
tse <- estimateDiversity(tse, index = index)

# The colData contains the indices with their code names by default
colData(tse)[, index]

# Removing indices
colData(tse)[, index] <- NULL

# 'threshold' can be used to determine threshold for 'coverage' index
tse <- estimateDiversity(tse, index = "coverage"”, threshold = 0.75)
# 'quantile' and 'num_of_classes' can be used when
# 'log_modulo_skewness' is calculated
tse <- estimateDiversity(tse, index = "log_modulo_skewness”,
quantile = 0.75, num_of_classes = 100)

# It is recommended to specify also the final names used in the output.
tse <- estimateDiversity(tse,

index = c("shannon”, "gini_simpson”, "inverse_simpson”, "coverage",
"fisher", "faith"”, "log_modulo_skewness"),
name = c("Shannon”, "GiniSimpson”, "InverseSimpson”, "Coverage",

"Fisher"”, "Faith”, "LogModSkewness"))

# The colData contains the indices by their new names provided by the user
colData(tse)[, name]

# Compare the indices visually
pairs(colData(tse)[, namel)

# Plotting the diversities - use the selected names

library(scater)
plotColData(tse, "Shannon")
# ... by sample type

plotColData(tse, "Shannon”, "SampleType")

# combining different plots
library(patchwork)
plot_index <- c("Shannon"”,"GiniSimpson")
plots <- lapply(plot_index,

plotColData,
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object = tse,
x = "SampleType”,
colour_by = "SampleType")
plots <- lapply(plots,"+",
theme(axis.text.x = element_text(angle=45,hjust=1)))
names(plots) <- plot_index
plots$Shannon + plots$GiniSimpson + plot_layout(guides = "collect")

estimateDominance Estimate dominance measures

Description

This function calculates community dominance indices. This includes the ‘Absolute’, ‘Berger-
Parker’, ‘Core abundance’, ‘Gini’, ‘McNaughton’s’, ‘Relative’, and ‘Simpson’s’ indices.

Usage

estimateDominance(
X,
assay.type = assay_name,
assay_name = "counts”,
index = c("absolute”, "dbp"”, "core_abundance”, "gini”, "dmn", "relative"”,
"simpson_lambda"),
ntaxa = 1,
aggregate = TRUE,
name = index,

BPPARAM = SerialParam()

## S4 method for signature 'SummarizedExperiment'’
estimateDominance(
X,
assay.type = assay_name,
assay_name = "counts”,
index = c("absolute”, "dbp", "core_abundance”, "gini”, "dmn", "relative”,
"simpson_lambda"),
ntaxa = 1,
aggregate = TRUE,
name = index,

BPPARAM = SerialParam()
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Arguments

X

assay. type

assay_name

index

ntaxa

aggregate

name

BPPARAM

Details

estimateDominance

a SummarizedExperiment object

A single character value for selecting the assay to calculate the sample-wise
estimates.

a single character value for specifying which assay to use for calculation.
(Please use assay. type instead. At some point assay_name will be disabled.)

a character vector, specifying the indices to be calculated.

Optional and only used for the Absolute and Relative dominance indices: The
n-th position of the dominant taxa to consider (default: ntaxa = 1). Disregarded

LEINT3

for the indices “dbp”, “core_abundance”, “Gini”, “dmn”, and “Simpson”.

Optional and only used for the Absolute, dbp, Relative, and dmn dominance
indices: Aggregate the values for top members selected by ntaxa or not. If TRUE,
then the sum of relative abundances is returned. Otherwise the relative abun-
dance is returned for the single taxa with the indicated rank (default: aggregate

9% ¢

= TRUE). Disregarded for the indices “core_abundance”, “gini”, “dmn”, and “simp-

Lt}

son .

A name for the column(s) of the colData where the calculated Dominance in-
dices should be stored in.

additional arguments currently not used.

A BiocParallelParamobject specifying whether calculation of estimates should
be parallelized. (Currently not used)

A dominance index quantifies the dominance of one or few species in a community. Greater values
indicate higher dominance.

Dominance indices are in general negatively correlated with alpha diversity indices (species rich-
ness, evenness, diversity, rarity). More dominant communities are less diverse.

estimateDominance calculates the following community dominance indices:

* ’absolute’ Absolute index equals to the absolute abundance of the most dominant n species of

the sample (specify the number with the argument ntaxa). Index gives positive integer values.

"dbp’ Berger-Parker index (See Berger & Parker 1970) calculation is a special case of the
relative’ index. dbp is the relative abundance of the most abundant species of the sample.
Index gives values in interval O to 1, where bigger value represent greater dominance.

N1
dbp = ——
AQM
where [V; is the absolute abundance of the most dominant species and Ny, is the sum of
absolute abundances of all species.

"core_abundance’ Core abundance index is related to core species. Core species are species
that are most abundant in all samples, i.e., in whole data set. Core species are defined as
those species that have prevalence over 50\ species must be prevalent in 50\ calculate the core
abundance index. Core abundance index is sum of relative abundances of core species in the
sample. Index gives values in interval O to 1, where bigger value represent greater dominance.
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Value

core

coregbundance =
tot

where N, is the sum of absolute abundance of the core species and N;,; is the sum of
absolute abundances of all species.

’gini’ Gini index is probably best-known from socio-economic contexts (Gini 1921). In eco-
nomics, it is used to measure, for example, how unevenly income is distributed among popu-
lation. Here, Gini index is used similarly, but income is replaced with abundance.

If there is small group of species that represent large portion of total abundance of microbes,
the inequality is large and Gini index closer to 1. If all species has equally large abundances,
the equality is perfect and Gini index equals 0. This index should not be confused with Gini-
Simpson index, which quantifies diversity.

’dmn’ McNaughton’s index is the sum of relative abundances of the two most abundant species
of the sample (McNaughton & Wolf, 1970). Index gives values in the unit interval:

dmn = (N7 + N3)/N;ot

where N1 and N, are the absolute abundances of the two most dominant species and Ny, is
the sum of absolute abundances of all species.

relative’ Relative index equals to the relative abundance of the most dominant n species of
the sample (specify the number with the argument ntaxa). This index gives values in interval
Oto 1.

relative = Ny /Niot

where [V; is the absolute abundance of the most dominant species and N;,; is the sum of
absolute abundances of all species.

’simpson_lambda’ Simpson’s (dominance) index or Simpson’s lambda is the sum of squared
relative abundances. This index gives values in the unit interval. This value equals the prob-
ability that two randomly chosen individuals belongs to the same species. The higher the
probability, the greater the dominance (See e.g. Simpson 1949).

lambda = Z(pQ)

where p refers to relative abundances.

There is also a more advanced Simpson dominance index (Simpson 1949). However, this
is not provided and the simpler squared sum of relative abundances is used instead as the
alternative index is not in the unit interval and it is highly correlated with the simpler variant
implemented here.

x with additional colData named *name*

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io


microbiome.github.io
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References

Berger WH & Parker FL (1970) Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Sci-
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See Also

e estimateRichness
e estimateEvenness

* estimateDiversity

Examples

data(esophagus)

# Calculates Simpson's lambda (can be used as a dominance index)
esophagus <- estimateDominance(esophagus, index="simpson_lambda")

# Shows all indices
colData(esophagus)

# Indices must be written correctly (e.g. dbp, not dbp), otherwise an error
# gets thrown

esophagus <- estimateDominance(esophagus, index="dbp")

# Calculates dbp and Core Abundance indices

esophagus <- estimateDominance(esophagus, index=c("dbp", "core_abundance”))
# Shows all indices

colData(esophagus)

# Shows dbp index

colData(esophagus) $dbp

# Deletes dbp index

colData(esophagus)$dbp <- NULL

# Shows all indices, dbp is deleted

colData(esophagus)

# Deletes all indices

colData(esophagus) <- NULL

# Calculates all indices

esophagus <- estimateDominance(esophagus)
# Shows all indices

colData(esophagus)

# Deletes all indices

colData(esophagus) <- NULL

# Calculates all indices with explicitly specified names
esophagus <- estimateDominance(esophagus,
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index = c("dbp”, "dmn", "absolute", "relative”,
"simpson_lambda”, "core_abundance”, "gini"),
name = c("BergerParker”, "McNaughton”, "Absolute"”, "Relative”,
"SimpsonLambda"”, "CoreAbundance”, "Gini")
)
# Shows all indices
colData(esophagus)
estimateEvenness Estimate Evenness measures
Description

This function calculates community evenness indices. These include the ‘Camargo’, ‘Pielou’,
‘Simpson’, ‘Evar’ and ‘Bulla’ evenness measures. See details for more information and references.

Usage

estimateEvenness(
X,
assay.type = assay_name,
assay_name = "counts”,
index = c("pielou”, "camargo”, "simpson_evenness", "evar"”, "bulla"),
name = index,

)
## S4 method for signature 'SummarizedExperiment’
estimateEvenness(
X,
assay.type = assay_name,
assay_name = "counts”,
index = c("camargo”, "pielou”, "simpson_evenness", "evar"”, "bulla"),

name = index,

BPPARAM = SerialParam()

)
Arguments
X a SummarizedExperiment object
assay.type A single character value for selecting the assay used for calculation of the
sample-wise estimates.
assay_name a single character value for specifying which assay to use for calculation.

(Please use assay. type instead. At some point assay_name will be disabled.)

index a character vector, specifying the evenness measures to be calculated.
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name a name for the column(s) of the colData the results should be stored in.
optional arguments:

* threshold a numeric threshold. assay values below or equal to this threshold
will be set to zero.

BPPARAM A BiocParallelParamobject specifying whether calculation of estimates should
be parallelized.

Details
Evenness is a standard index in community ecology, and it quantifies how evenly the abundances of
different species are distributed. The following evenness indices are provided:
By default, this function returns all indices.

The available evenness indices include the following (all in lowercase):

* ’camargo’ Camargo’s evenness (Camargo 1992)

* ’simpson_evenness’ Simpson’s evenness is calculated as inverse Simpson diversity (1/lambda)
divided by observed species richness S: (1/lambda)/S.

* ’pielou’ Pielou’s evenness (Pielou, 1966), also known as Shannon or Shannon-Weaver/Wiener/Weiner
evenness; H/In(S). The Shannon-Weaver is the preferred term; see Spellerberg and Fedor
(2003).

¢ ’evar’ Smith and Wilson’s Evar index (Smith & Wilson 1996).

* ’bulla’ Bulla’s index (O) (Bulla 1994).
Desirable statistical evenness metrics avoid strong bias towards very large or very small abundances;
are independent of richness; and range within the unit interval with increasing evenness (Smith &

Wilson 1996). Evenness metrics that fulfill these criteria include at least camargo, simpson, smith-
wilson, and bulla. Also see Magurran & McGill (2011) and Beisel et al. (2003) for further details.

Value

x with additional colData named *namex

References

Beisel J-N. et al. (2003) A Comparative Analysis of Evenness Index Sensitivity. Internal Rev. Hy-
drobiol. 88(1):3-15. URL: https://portais.ufg.br/up/202/0/2003-comparative_evennes_
index.pdf

Bulla L. (1994) An index of evenness and its associated diversity measure. Oikos 70:167-171.

Camargo, JA. (1992) New diversity index for assessing structural alterations in aquatic communi-
ties. Bull. Environ. Contam. Toxicol. 48:428-434.

Locey KJ and Lennon JT. (2016) Scaling laws predict global microbial diversity. PNAS 113(21):5970-
5975; doi:10.1073/pnas.1521291113.

Magurran AE, McGill BJ, eds (2011) Biological Diversity: Frontiers in Measurement and Assess-
ment (Oxford Univ Press, Oxford), Vol 12.

Pielou, EC. (1966) The measurement of diversity in different types of biological collections. J
Theoretical Biology 13:131-144.
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Smith B and Wilson JB. (1996) A Consumer’s Guide to Evenness Indices. Oikos 76(1):70-82.
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Spellerberg and Fedor (2003). A tribute to Claude Shannon (1916 —2001) and a plea for more
rigorous use of species richness, species diversity and the ‘Shannon—Wiener’ Index. Alpha Ecology
& Biogeography 12, 177-197.

See Also

plotColData

e estimateRichness

e estimateDominance

* estimateDiversity

Examples

data(esophagus)
tse <- esophagus

# Specify index and their output names
index <- c("pielou”, "camargo"”, "simpson_evenness"”, "evar”, "bulla")

name <- c("Pielou”, "Camargo", "SimpsonEvenness”,

# Estimate evenness and give polished names to be used in the output

tse <- estimateEvenness(tse, index = index, name

# Check the output
head(colData(tse))

"Evar”, "Bulla")

name)

estimateRichness Estimate richness measures

Description

Several functions for calculation of community richness indices available via wrapper functions.
They are implemented via the vegan package.

Usage
estimateRichness(
X,
assay.type = assay_name,
assay_name = "counts”,
index = c("ace", "chaol”, "hill", "observed"),
name = index,
detection = 0,
BPPARAM = SerialParam()
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)
## S4 method for signature 'SummarizedExperiment'’
estimateRichness(

X,

assay.type = assay_name,

assay_name = "counts”,

index = c("ace”, "chaol”, "hill"”, "observed"),

name = index,
detection = 0,

BPPARAM = SerialParam()

)
Arguments
X a SummarizedExperiment object.
assay.type the name of the assay used for calculation of the sample-wise estimates.
assay_name a single character value for specifying which assay to use for calculation.
(Please use assay. type instead. At some point assay_name will be disabled.)
index a character vector, specifying the richness measures to be calculated.
name a name for the column(s) of the colData the results should be stored in.
detection anumeric value for selecting detection threshold for the abundances. The default
detection threshold is 0.
additional parameters passed to estimateRichness
BPPARAM A BiocParallelParamobject specifying whether calculation of estimates should
be parallelized.
Details

These include the ‘ace’, ‘Chaol’, ‘Hill’, and ‘Observed’ richness measures. See details for more
information and references.

The richness is calculated per sample. This is a standard index in community ecology, and it pro-
vides an estimate of the number of unique species in the community. This is often not directly
observed for the whole community but only for a limited sample from the community. This has led
to alternative richness indices that provide different ways to estimate the species richness.

Richness index differs from the concept of species diversity or evenness in that it ignores species
abundance, and focuses on the binary presence/absence values that indicate simply whether the
species was detected.

The function takes all index names in full lowercase. The user can provide the desired spelling
through the argument name (see examples).

The following richness indices are provided.
* ’ace’ Abundance-based coverage estimator (ACE) is another nonparametric richness index

that uses sample coverage, defined based on the sum of the probabilities of the observed
species. This method divides the species into abundant (more than 10 reads or observations)
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Value

and rare groups in a sample and tends to underestimate the real number of species. The ACE
index ignores the abundance information for the abundant species, based on the assumption
that the abundant species are observed regardless of their exact abundance. We use here the
bias-corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. For an
exact formulation, see estimateR. Note that this index comes with an additional column with
standard error information.

"chaol’ This is a nonparametric estimator of species richness. It assumes that rare species
carry information about the (unknown) number of unobserved species. We use here the bias-
corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. This index
implicitly assumes that every taxa has equal probability of being observed. Note that it gives a
lower bound to species richness. The bias-corrected for an exact formulation, see estimateR.
This estimator uses only the singleton and doubleton counts, and hence it gives more weight
to the low abundance species. Note that this index comes with an additional column with
standard error information.

“hill” Effective species richness aka Hill index (see e.g. Chao et al. 2016). Currently only the
case 1D is implemented. This corresponds to the exponent of Shannon diversity. Intuitively,
the effective richness indicates the number of species whose even distribution would lead to
the same diversity than the observed community, where the species abundances are unevenly
distributed.

"observed’ The observed richness gives the number of species that is detected above a given
detection threshold in the observed sample (default 0). This is conceptually the simplest
richness index. The corresponding index in the vegan package is "richness".

x with additional colData named *name*

Author(s)

Leo Lahti. Contact: microbiome.github.io

References

Chao A. (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat.
11:265-270.

Chao A, Chun-Huo C, Jost L (2016). Phylogenetic Diversity Measures and Their Decomposition:
A Framework Based on Hill Numbers. Biodiversity Conservation and Phylogenetic Systematics,
Springer International Publishing, pp. 141-172, doi:10.1007/978-3-319-22461-9_8.

Chiu, C.H., Wang, Y.T., Walther, B.A. & Chao, A. (2014). Improved nonparametric lower bound
of species richness via a modified Good-Turing frequency formula. Biometrics 70, 671-682.

O’Hara, R.B. (2005). Species richness estimators: how many species can dance on the head of a
pin? J. Anim. Ecol. 74, 375-386.

See Also

plotColData

estimateR
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Examples

data(esophagus)

# Calculates all richness indices by default
esophagus <- estimateRichness(esophagus)

# Shows all indices
colData(esophagus)

# Shows Hill index
colData(esophagus)$hill

# Deletes hill index
colData(esophagus)$hill <- NULL

# Shows all indices, hill is deleted
colData(esophagus)

# Delete the remaining indices
colData(esophagus)[, c("observed”, "chaol”, "ace")] <- NULL

# Calculates observed richness index and saves them with specific names
esophagus <- estimateRichness(esophagus,

index = c("observed”, "chaol”, "ace", "hill"),
name = c("Observed”, "Chaol1"”, "ACE", "Hill"))

# Show the new indices
colData(esophagus)

# Deletes all colData (including the indices)
colData(esophagus) <- NULL

# Calculate observed richness excluding singletons (detection limit 1)
esophagus <- estimateRichness(esophagus, index="observed"”, detection = 1)

# Deletes all colData (including the indices)
colData(esophagus) <- NULL

# Indices must be written correctly (all lowercase), otherwise an error
# gets thrown
esophagus <- estimateRichness(esophagus, index="ace")

# Calculates Chaol and ACE indices only
esophagus <- estimateRichness(esophagus, index=c("chaol”, "ace"),
name=c("Chao1"”, "ACE"))

# Deletes all colData (including the indices)
colData(esophagus) <- NULL

# Names of columns can be chosen arbitrarily, but the length of arguments
# must match.
esophagus <- estimateRichness(esophagus,
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index = c("ace"”, "chaol"),
name = c("index1"”, "index2"))
# Shows all indices
colData(esophagus)

getExperimentCrossAssociation
Calculate correlations between features of two experiments.

Description

Calculate correlations between features of two experiments.

Usage

getExperimentCrossAssociation(x, ...)

## S4 method for signature 'MultiAssayExperiment'’
getExperimentCrossAssociation(

X,

experimentl = 1,

experiment2 = 2,

assay.typel = assay_namel,

assay_namel = "counts"”,
assay.type2 = assay_name2,
assay_name2 = "counts”,

altexpl = NULL,
altexp2 = NULL,

colData_variablel = NULL,

colData_variable2 = NULL,

MARGIN = 1,

method = c("kendall”, "spearman”, "categorical”, "pearson"”),

mode = "table"”,

p_adj_method = c("fdr", "BH", "bonferroni”, "BY", "hochberg"”, "holm", "hommel”, "none"),
p_adj_threshold = NULL,

cor_threshold = NULL,

sort = FALSE,

filter_self_correlations = FALSE,

verbose = TRUE,

test_significance = FALSE,

show_warnings = TRUE,

paired = FALSE,

## S4 method for signature 'SummarizedExperiment'’
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getExperimentCrossAssociation(x, experiment2 = x, ...)
testExperimentCrossAssociation(x, ...)

## S4 method for signature 'ANY'
testExperimentCrossAssociation(x, ...)

testExperimentCrossCorrelation(x, ...)

## S4 method for signature 'ANY'
testExperimentCrossCorrelation(x, ...)

getExperimentCrossCorrelation(x, ...)

## S4 method for signature 'ANY'

getExperimentCrossCorrelation(x, ...)
Arguments
X A MultiAssayExperiment or SummarizedExperiment object.

Additional arguments:

* symmetric A single boolean value for specifying if measure is symmet-
ric or not. When symmetric = TRUE, associations are calculated only for
unique variable-pairs, and they are assigned to corresponding variable-pair.
This decreases the number of calculations in 2-fold meaning faster execu-
tion. (By default: symmetric = FALSE)

* association_FUN A function that is used to calculate (dis-)similarity be-
tween features. Function must take matrix as an input and give numeric
values as an output. Adjust method and other parameters correspondingly.
Supported functions are, for example, stats: :dist and vegan: :vegdist.

experimentl A single character or numeric value for selecting the experiment 1 from experiments(x)
of MultiassayExperiment object. (By default: experimentl = 1)

experiment2 A single character or numeric value for selecting the experiment 2 fromexperiments(x)
of MultiAssayExperiment object or altExp(x) of TreeSummarizedExperiment
object. Alternatively, experiment?2 can also be TreeSE object when x is TreeSE
object. (By default: experiment2 = 2 when x is MAE and experiment2 = x when
x is TreeSE)

assay. typel A single character value for selecting the assay of experiment 1 to be trans-
formed. (By default: assay. typel = "counts”)

assay_namel a single character value for specifying which assay of experiment 1 to use for
calculation. (Please use assay. typel instead. At some point assay_namel will
be disabled.)

assay.type2 A single character value for selecting the assay of experiment 2 to be trans-

formed. (By default: assay. type2 = "counts”)

assay_name2 a single character value for specifying which assay of experiment 2 to use for
calculation. (Please use assay.type2 instead. At some point assay_name2 will
be disabled.)
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altexpl

altexp2

A single numeric or character value specifying alternative experiment from the
altExp of experiment 1. If NULL, then the experiment is itself and altExp option
is disabled. (By default: altexp1 = NULL)

A single numeric or character value specifying alternative experiment from the

altExp of experiment 2. If NULL, then the experiment is itself and altExp option
is disabled. (By default: altexp2 = NULL)

colData_variable1

A character value specifying column(s) from colData of experiment 1. If col-
Data_variablel is used, assay.typel is disabled. (By default: colData_variable1
= NULL)

colData_variable?2

MARGIN

method

mode

p_adj_method

p_adj_threshold

cor_threshold

sort

A character value specifying column(s) from colData of experiment 2. If col-
Data_variable2 is used, assay.type?2 is disabled. (By default: colData_variable2
= NULL)

A single numeric value for selecting if association are calculated row-wise / for
features (1) or column-wise / for samples (2). Must be 1 or 2. (By default:
MARGIN = 1)

A single character value for selecting association method ("kendall’, pearson’,
or ’spearman’ for continuous/numeric; ’categorical’ for discrete) (By default:
method = "kendall")

A single character value for selecting output format Available formats are "table’
and 'matrix’. (By default: mode = "table")

A single character value for selecting adjustment method of p-values. Passed to
p.adjust function. (By default: p_adj_method = "fdr")

A single numeric value (from 0 to 1) for selecting adjusted p-value threshold for
filtering. (By default: p_adj_threshold = NULL)

A single numeric absolute value (from O to 1) for selecting correlation threshold
for filtering. (By default: cor_threshold = NULL)

A single boolean value for selecting whether to sort features or not in result
matrices. Used method is hierarchical clustering. (By default: sort = FALSE)

filter_self_correlations

verbose

A single boolean value for selecting whether to filter out correlations between
identical items. Applies only when correlation between experiment itself is
tested, i.e., when assays are identical. (By default: filter_self_correlations
= FALSE)

A single boolean value for selecting whether to get messages about progress of
calculation.

test_significance

show_warnings

paired

A single boolean value for selecting whether to test statistical significance of
associations.

A single boolean value for selecting whether to show warnings that might occur
when correlations and p-values are calculated.

A single boolean value for specifying if samples are paired or not. colnames
must match between twp experiments. paired is disabled when MARGIN = 1.
(By default: paired = FALSE)
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Details

These functions calculates associations between features of two experiments. getExperimentCrossAssociation
calculates only associations by default. testExperimentCrossAssociation calculates also signif-
icance of associations.

We recommend the non-parametric Kendall’s tau as the default method for association analysis.
Kendall’s tau has desirable statistical properties and robustness at lower sample sizes. Spearman
rank correlation can provide faster solutions when running times are critical.

Value

These functions return associations in table or matrix format. In table format, returned value is
a data frame that includes features and associations (and p-values) in columns. In matrix format,
returned value is a one matrix when only associations are calculated. If also significances are tested,
then returned value is a list of matrices.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

Examples

data(HintikkaXOData)
mae <- HintikkaXOData

# Subset so that less observations / quicker to run, just for example

mae[[1]] <- mae[[1]1]1[1:20, 1:10]

mae[[2]] <- mae[[2]]1[1:20, 1:10]

# Several rows in the counts assay have a standard deviation of zero

# Remove them, since they do not add useful information about cross-association
mae[[1]1] <- mae[[1]][rowSds(assay(mae[[1]1]1)) > 0, 1]

# Transform data

mae[[1]] <- transformAssay(mae[[1]], method = "rclr")

# Calculate cross-correlations

result <- getExperimentCrossAssociation(mae, method = "pearson”, assay.type2 = "nmr”
# Show first 5 entries

head(result, 5)

# Use altExp option to specify alternative experiment from the experiment

altExp(mae[[1]1], "Phylum”) <- agglomerateByRank(mae[[1]], rank = "Phylum")

# Transform data

altExp(mae[[1]1], "Phylum”) <- transformAssay(altExp(mae[[1]1], "Phylum”), method = "relabundance")

# When mode = "matrix", the return value is a matrix
result <- getExperimentCrossAssociation(mae, experiment2 = 2,
assay.typel = "relabundance”, assay.type2 = "nmr",
altexpl = "Phylum”,
method = "pearson”, mode = "matrix")

# Show first 5 entries
head(result, 5)

# testExperimentCorrelation additionally returns significances
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# filter_self_correlations = TRUE filters self correlations

# p_adj_threshold can be used to filter those features that do not

# have any correlations whose p-value is lower than the threshold

result <- testExperimentCrossAssociation(mae[[1]], experiment2 = mae[[1]], method = "pearson”,
filter_self_correlations = TRUE,
p_adj_threshold = 0.05)

# Show first 5 entries

head(result, 5)

# getExperimentCrossAssociation also returns significances when

# test_significance = TRUE

# Warnings can be suppressed by using show_warnings = FALSE

result <- getExperimentCrossAssociation(mae[[1]], experiment2 = mae[[2]], method = "pearson”,
assay.type2 = "nmr"”,
mode = "matrix"”, test_significance = TRUE,

show_warnings = FALSE)

# Returned value is a list of matrices
names(result)

# Calculate Bray-Curtis dissimilarity between samples. If dataset includes

# paired samples, you can use paired = TRUE.

result <- getExperimentCrossAssociation(mae[[1]], mae[[1]], MARGIN = 2, paired = FALSE,
association_FUN = vegan::vegdist, method = "bray")

# If experiments are equal and measure is symmetric (e.g., taxal vs taxa2 == taxa2 vs taxal),

# it is possible to speed-up calculations by calculating association only for unique

# variable-pairs. Use "symmetric” to choose whether to measure association for only

# other half of of variable-pairs.

result <- getExperimentCrossAssociation(mae, experimentl = "microbiota”, experiment2 = "microbiota”,
assay.typel = "counts”, assay.type2 = "counts”,
symmetric = TRUE)

# For big data sets, the calculations might take a long time.

# To speed them up, you can take a random sample from the data.

# When dealing with complex biological problems, random samples can be

# enough to describe the data. Here, our random sample is 30 % of whole data.
sample_size <- 0.3

tse <- mae[[1]]

tse_sub <- tse[ sample( seq_len( nrow(tse) ), sample_size * nrow(tse) ), 1
result <- testExperimentCrossAssociation(tse_sub)

# It is also possible to choose variables from colData and calculate association

# between assay and sample metadata or between variables of sample metadata

mae[[1]] <- estimateDiversity(mae[[1]])

# colData_variable works similarly to assay.type. Instead of fetching an assay

# named assay.type from assay slot, it fetches a column named colData_variable

# from colData.

result <- getExperimentCrossAssociation(mae[[1]], assay.typel = "counts",
colData_variable2 = c(”shannon”, "coverage"))
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getPrevalence Calculation prevalence information for features across samples

Description

These functions calculate the population prevalence for taxonomic ranks in a SummarizedExperiment-class
object.

Usage

getPrevalence(x, ...)

## S4 method for signature 'ANY'
getPrevalence(

X,

detection = 0,

include_lowest = FALSE,

sort = FALSE,
na.rm = TRUE,
)
## S4 method for signature 'SummarizedExperiment'
getPrevalence(
X7
assay.type = assay_name,
assay_name = "counts”,
as_relative = FALSE,
rank = NULL,
)
getPrevalentFeatures(x, ...)

## S4 method for signature 'ANY'
getPrevalentFeatures(x, prevalence = 50/100, include_lowest = FALSE, ...)

## S4 method for signature 'SummarizedExperiment’
getPrevalentFeatures(

X,

rank = NULL,

prevalence = 50/100,

include_lowest = FALSE,

getPrevalentTaxa(x, ...)
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## S4 method for signature 'ANY'
getPrevalentTaxa(x, ...)

getRareFeatures(x, ...)

## S4 method for signature 'ANY'
getRareFeatures(x, prevalence = 50/100, include_lowest

## S4 method for signature 'SummarizedExperiment'’

getRareFeatures(
X’
rank = NULL,

prevalence = 50/100,
include_lowest = FALSE,

)
getRareTaxa(x, ...)

## S4 method for signature 'ANY'
getRareTaxa(x, ...)

subsetByPrevalentFeatures(x, ...)

## S4 method for signature 'SummarizedExperiment'’
subsetByPrevalentFeatures(x, rank = NULL, ...)

subsetByPrevalentTaxa(x, ...)

## S4 method for signature 'ANY'
subsetByPrevalentTaxa(x, ...)

subsetByRareFeatures(x, ...)

## S4 method for signature 'SummarizedExperiment'’
subsetByRareFeatures(x, rank = NULL, ...)

subsetByRareTaxa(x, ...)

## S4 method for signature 'ANY'
subsetByRareTaxa(x, ...)

getPrevalentAbundance(
X,
assay.type = assay_name,
assay_name = "relabundance”,

FALSE,

)

47
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)
## S4 method for signature 'ANY'
getPrevalentAbundance(
X,
assay.type = assay_name,
assay_name = "relabundance”,
)
## S4 method for signature 'SummarizedExperiment'’
getPrevalentAbundance(x, assay.type = assay_name, assay_name = "counts”, ...)
Arguments
X a SummarizedExperiment object
additional arguments
e If lis.null(rank) arguments are passed on to agglomerateByRank. See
?agglomerateByRank for more details. Note that you can specify whether
to remove empty ranks with agg.na.rminstead of na.rm. (default: FALSE)
» forgetPrevalentFeatures, getRareFeatures, subsetByPrevalentFeatures
and subsetByRareFeatures additional parameters passed to getPrevalence
* for getPrevalentAbundance additional parameters passed to getPrevalentFeatures
detection Detection threshold for absence/presence. Either an absolute value compared

include_lowest

sort

na.rm

assay.type

assay_name

as_relative

rank

prevalence

Details

directly to the values of x or a relative value between 0 and 1, if as_relative =
FALSE.

logical scalar: Should the lower boundary of the detection and prevalence cutoffs
be included? (default: FALSE)

logical scalar: Should the result be sorted by prevalence? (default: FALSE)

logical scalar: Should NA values be omitted when calculating prevalence? (de-
fault: na.rm = TRUE)

A single character value for selecting the assay to use for prevalence calcula-
tion.

a single character value for specifying which assay to use for calculation.
(Please use assay. type instead. At some point assay_name will be disabled.)

logical scalar: Should the detection threshold be applied on compositional (rel-
ative) abundances? (default: FALSE)

a single character defining a taxonomic rank. Must be a value of taxonomyRanks ()
function.

Prevalence threshold (in O to 1). The required prevalence is strictly greater by
default. To include the limit, set include_lowest to TRUE.

getPrevalence calculates the relative frequency of samples that exceed the detection threshold.
For SummarizedExperiment objects, the prevalence is calculated for the selected taxonomic rank,
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otherwise for the rows. The absolute population prevalence can be obtained by multiplying the
prevalence by the number of samples (ncol(x)). If as_relative = FALSE the relative frequency
(between 0 and 1) is used to check against the detection threshold.

The core abundance index from getPrevalentAbundance gives the relative proportion of the core
species (in between 0 and 1). The core taxa are defined as those that exceed the given population
prevalence threshold at the given detection level as set for getPrevalentFeatures.

subsetPrevalentFeatures and subsetRareFeatures return a subset of x. The subset includes
the most prevalent or rare taxa that are calculated with getPrevalentFeatures or getRareFeatures
respectively.

getPrevalentFeatures returns taxa that are more prevalent with the given detection threshold for
the selected taxonomic rank.

getRareFeatures returns complement of getPrevalentTaxa.

Value

subsetPrevalentFeatures and subsetRareFeatures return subset of x.
All other functions return a named vectors:
* getPrevalence returns a numeric vector with the names being set to either the row names of
x or the names after agglomeration.

* getPrevalentAbundance returns a numeric vector with the names corresponding to the col-
umn name of x and include the joint abundance of prevalent taxa.

* getPrevalentTaxa and getRareFeatures return a character vector with only the names
exceeding the threshold set by prevalence, if the rownames of x is set. Otherwise an integer
vector is returned matching the rows in x.

Author(s)

Leo Lahti For getPrevalentAbundance: Leo Lahti and Tuomas Borman. Contact: microbiome.
github.io

References

A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health
status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the R package, see cita-
tion(’mia’)

See Also

agglomerateByRank, getTopTaxa

Examples

data(GlobalPatterns)

tse <- GlobalPatterns

# Get prevalence estimates for individual ASV/0TU

prevalence.frequency <- getPrevalence(tse,
detection = 0,
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sort = TRUE,
as_relative = TRUE)
head(prevalence. frequency)

# Get prevalence estimates for phylums
# - the getPrevalence function itself always returns population frequencies
prevalence.frequency <- getPrevalence(tse,
rank = "Phylum”,
detection = 0,
sort = TRUE,
as_relative = TRUE)
head(prevalence. frequency)

# - to obtain population counts, multiply frequencies with the sample size,
# which answers the question "In how many samples is this phylum detectable”
prevalence.count <- prevalence.frequency * ncol(tse)

head(prevalence.count)

# Detection threshold 1 (strictly greater by default);
# Note that the data (GlobalPatterns) is here in absolute counts
# (and not compositional, relative abundances)
# Prevalence threshold 50 percent (strictly greater by default)
prevalent <- getPrevalentFeatures(tse,

rank = "Phylum”,

detection = 10,

prevalence = 50/100,

as_relative = FALSE)
head(prevalent)

# Gets a subset of object that includes prevalent taxa
altExp(tse, "prevalent”) <- subsetByPrevalentFeatures(tse,
rank = "Family”,
detection = 0.001,
prevalence = 0.55,
as_relative = TRUE)
altExp(tse, "prevalent")

# getRareFeatures returns the inverse
rare <- getRareFeatures(tse,
rank = "Phylum”,
detection = 1/100,
prevalence = 50/100,
as_relative = TRUE)
head(rare)

# Gets a subset of object that includes rare taxa
altExp(tse, "rare") <- subsetByRareFeatures(tse,
rank = "Class”,
detection = 0.001,
prevalence = 0.001,
as_relative = TRUE)
altExp(tse, "rare")
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# Names of both experiments, prevalent and rare, can be found from slot altExpNames

tse
data(esophagus)
getPrevalentAbundance(esophagus, assay.type = "counts")
GlobalPatterns GlobalPatterns
Description

GlobalPatterns compared the microbial communities from 25 environmental samples and three
known "mock communities” at a an average depth of 3.1 million reads per sample. Authors re-
produced diversity patterns seen in many other published studies, while investigating technical bias
by applying the same techniques to simulated microbial communities of known composition. Spe-
cial thanks are given to J. Gregory Caporaso for providing the OTU-clustered data files for inclusion
in the phyloseq package, from which this data was converted to TreeSummarizedExperiment.

Usage

data(GlobalPatterns)

Format

A TreeSummarizedExperiment with 19216 features and 26 samples. The rowData contains tax-
onomic information at Kingdom, Phylum, Class, Order, Family, Genus and Species levels. The
colData includes:

X.SampleID Sample ID taken from the corresponding study

Primer primer used for sequencing

Final_Barcode final barcode (6 nucleotides)

Barcode_truncated_plus_T truncated barcode with an added tyrosine (6 nucleotides)
Barcode_full_length complete barcode with a length of 11 nucleotides

SampleType sampling type by collection site (Soil, Feces, Skin, Tongue, Freshwater, Creek Fresh-
water, Ocean, Estuary Sediment and Mock)

Description additional information (sampling location, environmental factors and study type)

Author(s)

Caporaso, J. G., et al.

References

Caporaso, J. G., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of
sequences per sample. PNAS, 108, 4516-4522. https://doi.org/10.1073/pnas. 1000080107
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See Also

mia-datasets

hierarchy-tree Calculate hierarchy tree

Description

These functions generate a hierarchy tree using taxonomic information from a SummarizedExperiment
object and add this hierarchy tree into the rowTree.
Usage

getHierarchyTree(x, ...)

## S4 method for signature 'SummarizedExperiment'’
getHierarchyTree(x)

addHierarchyTree(x, ...)

## S4 method for signature 'SummarizedExperiment

addHierarchyTree(x)
Arguments
X a SummarizedExperiment object

optional arguments not used currently.

Details
addHierarchyTree calculates a hierarchy tree from the available taxonomic information and add it
to rowTree.

getHierarchyTree generates a hierarchy tree from the available taxonomic information. Internally
it uses toTree and resolveloop to sanitize data if needed.

Please note that a hierarchy tree is not an actual phylogenetic tree. A phylogenetic tree represents
evolutionary relationships among features. On the other hand, a hierarchy tree organizes species
into a hierarchical structure based on their taxonomic ranks.

Value

* addHierarchyTree: a TreeSummarizedExperiment whose phylo tree represents the hierar-
chy among available taxonomy information

» getHierarchyTree: a phylo tree representing the hierarchy among available taxonomy in-
formation.
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Examples

# Generate a tree based on taxonomic rank hierarchy (a hierarchy tree).
data(GlobalPatterns)
tse <- GlobalPatterns
getHierarchyTree(tse)

# Add a hierarchy tree to a TreeSummarizedExperiment.

# Please note that any tree already stored in rowTree() will be overwritten.
tse <- addHierarchyTree(tse)

tse

HintikkaXOData HintikkaXOData

Description

HintikkaXO is a multiomics dataset from a rat experiment studying effect of fat and prebiotics in
diet. It contains high-throughput profiling data from 40 rat samples, including 39 biomarkers, 38
metabolites (NMR), and 12706 OTUs from 318 species, measured from Cecum. This is diet com-
parison study with High/Low fat diet and xylo-oligosaccaride supplementation. Column metadata
is common for all experiments (microbiota, metabolites, biomarkers) and is described below.

Usage

data(HintikkaXOData)

Format

A MultiAssayExperiment with 3 experiments (microbiota, metabolites and biomarkers). rowData
of the microbiota experiment contains taxonomic information at Phylum, Class, Order, Family,
Genus, Species and OTU levels. The metabolites and biomarkers experiments contain 38 NMR
metabolites and 39 biomarkers, respectively. The colData includes:

Sample Sample ID (character)

Rat Rat ID (factor)

Site Site of measurement ("Cecum"); single value

Diet Diet group (factor; combination of the Fat and XOS fields)
Fat Fat in Diet (factor; Low/High)

XOS XOS Diet Supplement (numeric; 0/1)

Author(s)
Hintikka L et al.



54 importHUMAnN

References

Hintikka L et al. (2021): Xylo-oligosaccharides in prevention of hepatic steatosis and adipose
tissue inflammation: associating taxonomic and metabolomic patterns in fecal microbiota with bi-
clustering. International Journal of Environmental Research and Public Health 18(8):4049. https:
//doi.org/10.3390/ijerph18084049

See Also

mia-datasets

importHUMANN Import HUMARN results to TreeSummarizedExperiment

Description

Import HUMANN results to TreeSummarizedExperiment

Arguments

file a single character value defining the file path of the HUMAnN file. The file
must be in merged HUMAnN format.

colData a DataFrame-like object that includes sample names in rownames, or a single
character value defining the file path of the sample metadata file. The file
must be in tsv format (default: colData = NULL).

additional arguments:

* assay.type: A single character value for naming assay (default: assay. type
="counts")

* removeTaxaPrefixes: TRUE or FALSE: Should taxonomic prefixes be re-
moved? (default: removeTaxaPrefixes = FALSE)

* remove.suffix: TRUE or FALSE: Should suffixes of sample names be re-
moved? HUMAnNN pipeline adds suffixes to sample names. Suffixes are
formed from file names. By selecting remove.suffix = TRUE, you can re-
move pattern from end of sample names that is shared by all. (default:
remove.suffix = FALSE)

Details

Import HUMAnNN (currently version 3.0 supported) results of functional predictions based on metagenome
composition (e.g. pathways or gene families). The input must be in merged HUMAnN format. (See
the HUMAnNN documentation and humann_join_tables method.)

The function parses gene/pathway information along with taxonomy information from the input
file. This information is stored to rowData. Abundances are stored to assays.

Usually the workflow includes also taxonomy data from Metaphlan. See importMetaPhlAn to load
the data to TreeSE.


https://doi.org/10.3390/ijerph18084049
https://doi.org/10.3390/ijerph18084049
https://github.com/biobakery/humann#humann_join_tables
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Value

A TreeSummarizedExperiment object

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Beghini F, Mclver LJ, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi
P, Scholz M, Thomas AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C,
Franzosa EA, & Segata N (2021) Integrating taxonomic, functional, and strain-level profiling of
diverse microbial communities with bioBakery 3. eLife. 10:e65088.

See Also

importMetaPhlAn makeTreeSEFromPhyloseqmakeTreeSEFromBiom makeTreeSEFromDADA2 importQIIME?2
importMothur

Examples

# File path

file_path <- system.file("extdata”, "humann_output.tsv”, package = "mia")
# Import data

tse <- importHUMAnN(file_path)

tse

importMetaPhlAn Import Metaphlan results to TreeSummarizedExperiment

Description

Import Metaphlan results to TreeSummarizedExperiment

Arguments

file a single character value defining the file path of the Metaphlan file. The file
must be in merged Metaphlan format.

colData a DataFrame-like object that includes sample names in rownames, or a single
character value defining the file path of the sample metadata file. The file
must be in tsv format (default: colData = NULL).

sample_meta a DataFrame-like object that includes sample names in rownames, or a single
character value defining the file path of the sample metadata file. The file
must be in tsv format (default: sample_meta = NULL).

phy_tree a single character value defining the file path of the phylogenetic tree. (default:

phy_tree = NULL).
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additional arguments:

* assay.type: A single character value for naming assay (default: assay. type
="counts")

* assay_name: A single character value for specifying which assay to use
for calculation. (Please use assay . type instead. At some point assay_name
will be disabled.)

* removeTaxaPrefixes: TRUE or FALSE: Should taxonomic prefixes be re-
moved? (default: removeTaxaPrefixes = FALSE)

* remove.suffix: TRUE or FALSE: Should suffixes of sample names be re-
moved? Metaphlan pipeline adds suffixes to sample names. Suffixes are
formed from file names. By selecting remove.suffix = TRUE, you can re-
move pattern from end of sample names that is shared by all. (default:
remove.suffix = FALSE)

* set.ranks: TRUE or FALSE: Should the columns in the rowData that are
treated as taxonomy ranks be updated according to the ranks found in the
imported data? (default: set.ranks = FALSE)

Details

Import Metaphlan (versions 2, 3 and 4 supported) results. Input must be in merged Metaphlan
format. (See the Metaphlan documentation and merge_metaphlan_tables method.) Data is im-
ported so that data at the lowest rank is imported as a TreeSummarizedExperiment object. Data
at higher rank is imported as a SummarizedExperiment objects which are stored to altExp of
TreeSummarizedExperiment object.

Currently Metaphlan versions 2, 3, and 4 are supported.

Value

A TreeSummarizedExperiment object

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Beghini F, Mclver LJ, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi
P, Scholz M, Thomas AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C,
Franzosa EA, & Segata N (2021) Integrating taxonomic, functional, and strain-level profiling of
diverse microbial communities with bioBakery 3. eLife. 10:65088. doi: 10.7554/eLife.65088

See Also

importHUMANN makeTreeSEFromPhyloseqmakeTreeSEFromBiommakeTreeSEFromDADA2 importQIIME2
importMothur


https://github.com/biobakery/MetaPhlAn/wiki/MetaPhlAn-4#merging-tables
microbiome.github.io
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Examples

# (Data is from tutorial
# https://github.com/biobakery/biobakery/wiki/metaphlan3#merge-outputs)

# File path

file_path <- system.file("extdata”, "merged_abundance_table.txt"”, package = "mia")
# Import data

tse <- importMetaPhlAn(file_path)

# Data at the lowest rank

tse

# Data at higher rank is stored in altExp

altExps(tse)

# Higher rank data is in SE format, for example, Phylum rank

altExp(tse, "Phylum")

importMothur Import Mothur results as a TreeSummarizedExperiment

Description

This method creates a TreeSummarizedExperiment object from Mothur files provided as input.

Usage

importMothur (sharedFile, taxonomyFile = NULL, designFile = NULL)

Arguments
sharedFile a single character value defining the file path of the feature table to be im-
ported. The File has to be in shared file format as defined in Mothur docu-
mentation.

taxonomyFile a single character value defining the file path of the taxonomy table to be
imported. The File has to be in taxonomy file or constaxonomy file format
as defined in Mothur documentation. (default: taxonomyFile = NULL).

designFile a single character value defining the file path of the sample metadata to be
imported. The File has to be in desing file format as defined in Mothur docu-
mentation. (default: designFile = NULL).
Details

Results exported from Mothur can be imported as a SummarizedExperiment using importMothur.
Except for the sharedFile, the other data types, taxonomyFile, and designFile, are optional, but
are highly encouraged to be provided.

Value

A TreeSummarizedExperiment object
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Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

https://mothur.org/ https://mothur.org/wiki/shared_file/ https://mothur.org/wiki/
taxonomy_file/ https://mothur.org/wiki/constaxonomy_file/ https://mothur.org/wiki/
design_file/

See Also

makeTreeSEFromPhyloseq makeTreeSEFromBiom makeTreeSEFromDADA2 importQIIME2

Examples

# Abundance table

counts <- system.file("extdata”, "mothur_example.shared”, package = "mia")

# Taxa table (in "cons.taxonomy” or "taxonomy” format)

taxa <- system.file("extdata”, "mothur_example.cons.taxonomy”, package = "mia")
#taxa <- system.file("extdata”, "mothur_example.taxonomy”, package = "mia")

# Sample meta data

meta <- system.file("extdata”, "mothur_example.design”, package = "mia")

# Creates se object from files

se <- importMothur(counts, taxa, meta)

# Convert SE to TreeSE

tse <- as(se, "TreeSummarizedExperiment”)
tse

importQIIME2 Import QIIME? results to TreeSummarizedExperiment

Description

Results exported from QIMME?2 can be imported as a TreeSummarizedExperiment using importQIIME2.
Except for the featureTableFile, the other data types, taxonomyTableFile, refSeqFile and
phyTreeFile, are optional, but are highly encouraged to be provided.

Import the QIIME?2 artifacts to R.

Usage

importQIIME2(
featureTableFile,
taxonomyTableFile = NULL,
sampleMetaFile = NULL,
featureNamesAsRefSeq = TRUE,
refSeqFile = NULL,
phyTreeFile = NULL,


microbiome.github.io
https://mothur.org/
https://mothur.org/wiki/shared_file/
https://mothur.org/wiki/taxonomy_file/
https://mothur.org/wiki/taxonomy_file/
https://mothur.org/wiki/constaxonomy_file/
https://mothur.org/wiki/design_file/
https://mothur.org/wiki/design_file/
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)
importQZA(file, temp = tempdir(), ...)
Arguments
featureTableFile
a single character value defining the file path of the feature table to be im-
ported.
taxonomyTableFile

a single character value defining the file path of the taxonomy table to be
imported. (default: taxonomyTableFile = NULL).

sampleMetaFile a single character value defining the file path of the sample metadata to be
imported. The file has to be in tsv format. (default: sampleMetaFile = NULL).

featureNamesAsRefSeq
TRUE or FALSE: Should the feature names of the feature table be regarded as ref-
erence sequences? This setting will be disregarded, if refSegFile is not NULL.
If the feature names do not contain valid DNA characters only, the reference
sequences will not be set.

refSeqFile a single character value defining the file path of the reference sequences for
each feature. (default: refSeqFile = NULL).

phyTreeFile asingle character value defining the file path of the phylogenetic tree.