--- title: "Example for Survival Data -- Skin Melanoma" author: "Eunice Carrasquinha and André Veríssimo" date: "`r Sys.Date()`" output: BiocStyle::html_document: number_sections: yes toc: true vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Example for Survival Data -- Skin Melanoma} %\VignetteEncoding{UTF-8} params: seed: !r 8432 --- ## Instalation ```{r, eval=FALSE} if (!require('BiocManager')) install.packages('BiocManager') BiocManager::install('glmSparseNet') ``` # Required Packages ```{r packages, message=FALSE, warning=FALSE} library(dplyr) library(ggplot2) library(survival) library(futile.logger) library(curatedTCGAData) library(TCGAutils) # library(glmSparseNet) # # Some general options for futile.logger the debugging package .Last.value <- flog.layout(layout.format('[~l] ~m')) .Last.value <- glmSparseNet:::show.message(FALSE) # Setting ggplot2 default theme as minimal theme_set(ggplot2::theme_minimal()) ``` # Load data The data is loaded from an online curated dataset downloaded from TCGA using `curatedTCGAData` bioconductor package and processed. To accelerate the process we use a very reduced dataset down to 107 variables only *(genes)*, which is stored as a data object in this package. However, the procedure to obtain the data manually is described in the following chunk. ```{r curated_data, include=FALSE} # chunk not included as it produces to many unnecessary messages skcm <- tryCatch({ curatedTCGAData( diseaseCode = "SKCM", assays = "RNASeq2GeneNorm", version = "1.1.38", dry.run = FALSE ) }, error = function(err) { NULL }) ``` ```{r curated_data_non_eval, eval=FALSE} skcm <- curatedTCGAData(diseaseCode = 'SKCM', assays = 'RNASeq2GeneNorm', version = '1.1.38', dry.run = FALSE) ``` Build the survival data from the clinical columns. * Merge survival times for patients, which have different columns in case they are alive or dead. * Build two matrix objects that fit the data `xdata` and `ydata` ```{r data.show, warning=FALSE, error=FALSE, eval=!is.null(skcm)} skcm.metastatic <- TCGAutils::TCGAsplitAssays(skcm, '06') xdata.raw <- t(assay(skcm.metastatic[[1]])) # Get survival information ydata.raw <- colData(skcm.metastatic) %>% as.data.frame %>% # Find max time between all days (ignoring missings) dplyr::rowwise() %>% dplyr::mutate( time = max(days_to_last_followup, days_to_death, na.rm = TRUE) ) %>% # Keep only survival variables and codes dplyr::select(patientID, status = vital_status, time) %>% # Discard individuals with survival time less or equal to 0 dplyr::filter(!is.na(time) & time > 0) %>% as.data.frame() # Get survival information ydata.raw <- colData(skcm) %>% as.data.frame %>% # Find max time between all days (ignoring missings) dplyr::rowwise() %>% dplyr::mutate( time = max(days_to_last_followup, days_to_death, na.rm = TRUE) ) %>% # Keep only survival variables and codes dplyr::select(patientID, status = vital_status, time) %>% # Discard individuals with survival time less or equal to 0 dplyr::filter(!is.na(time) & time > 0) %>% as.data.frame # Set index as the patientID rownames(ydata.raw) <- ydata.raw$patientID # keep only features that have standard deviation > 0 xdata.raw <- xdata.raw[TCGAbarcode(rownames(xdata.raw)) %in% rownames(ydata.raw),] xdata.raw <- xdata.raw %>% { (apply(., 2, sd) != 0) } %>% { xdata.raw[, .] } %>% scale # Order ydata the same as assay ydata.raw <- ydata.raw[TCGAbarcode(rownames(xdata.raw)), ] set.seed(params$seed) small.subset <- c('FOXL2', 'KLHL5', 'PCYT2', 'SLC6A10P', 'STRAP', 'TMEM33', 'WT1-AS', sample(colnames(xdata.raw), 100)) xdata <- xdata.raw[, small.subset[small.subset %in% colnames(xdata.raw)]] ydata <- ydata.raw %>% dplyr::select(time, status) ``` # Fit models Fit model model penalizing by the hubs using the cross-validation function by `cv.glmHub`. ```{r fit, eval=!is.null(skcm)} fitted <- cv.glmHub( xdata, Surv(ydata$time, ydata$status), family = 'cox', foldid = glmSparseNet:::balanced.cv.folds(!!ydata$status)$output, network = 'correlation', network.options = networkOptions(min.degree = .2, cutoff = .6) ) ``` # Results of Cross Validation Shows the results of `100` different parameters used to find the optimal value in 10-fold cross-validation. The two vertical dotted lines represent the best model and a model with less variables selected *(genes)*, but within a standard error distance from the best. ```{r results, eval=!is.null(skcm)} plot(fitted) ``` ## Coefficients of selected model from Cross-Validation Taking the best model described by `lambda.min` ```{r show_coefs, eval=!is.null(skcm)} coefs.v <- coef(fitted, s = 'lambda.min')[,1] %>% { .[. != 0]} coefs.v %>% { data.frame(ensembl.id = names(.), gene.name = geneNames(names(.))$external_gene_name, coefficient = ., stringsAsFactors = FALSE) } %>% arrange(gene.name) %>% knitr::kable() ``` ## Survival curves and Log rank test ```{r, eval=!is.null(skcm)} separate2GroupsCox(as.vector(coefs.v), xdata[, names(coefs.v)], ydata, plot.title = 'Full dataset', legend.outside = FALSE) ``` # Session Info ```{r sessionInfo} sessionInfo() ```