--- title: "Using gatom package" author: "Anstasiia Gainullina, Mariia Emelianova, Alexey Sergushichev" date: "October 2023" output: BiocStyle::html_document: toc: true toc_float: false self_contained: true vignette: > %\VignetteIndexEntry{Using gatom package} %\VignetteEngine{knitr::rmarkdown} \VignetteEncoding{UTF-8}" --- This tutorial describes an R-package for finding active metabolic modules based on high throughput data. The pipeline takes as input transcriptional and/or metabolic data and finds a metabolic subnetwork (module) most regulated between the two conditions of interest. The package relies on the active module analysis framework developed in [BioNet package](https://bioconductor.org/packages/BioNet), but extends it to work with metabolic reaction networks. Further, it illustrates the usage of [mwcsr package](https://cran.r-project.org/package=mwcsr) which provides a number of solvers for Maximum Weight Connected Subgraph problem and its variants. Example of using the pipeline include: * studying metabolic differences between pro- and anti-inflammatory macrophage activation ([Jha et al, 2015](http://dx.doi.org/10.1016/j.immuni.2015.02.005)); * studying metabolic rewiring associated with glucose-independent tumor growth ([Vinent at al, 2015](http://dx.doi.org/10.1016/j.molcel.2015.08.013)); * identification of deregulation of energy metabolism in Trem2-deficient macrophages ([Ulland et al, 2017](http://doi.org/10.1016/j.cell.2017.07.023)); * identification of inositol-triphosphate metabolism activation in monocytes in fasting mice ([Jordan et al, 2019](https://doi.org/10.1016/j.cell.2019.07.050)). More details on the pipeline are available in [Sergushichev et al, 2016](http://dx.doi.org/10.1093/nar/gkw266) and [Emelianova et al, 2022](https://doi.org/10.1093/nar/gkac427). # Installation You can install **gatom** via `BiocManager`: ```{R eval = FALSE} # if (!require("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("gatom") ``` # Example workfow In this example we will find an active metabolic module based on macrophage activation gene expression and metabolomics data ([Jha et al, 2015](http://dx.doi.org/10.1016/j.immuni.2015.02.005)). For improved performance here we will consider a simplified version of the data. See [Example on full data and full network](#example-full) section for the real-scale analysis. ```{r message=FALSE} library(gatom) library(data.table) library(igraph) library(mwcsr) ``` First let's load the example tables with input differential gene expression and metabolite abundance data for LPS-IFNg stimulated macrophages compared to controls: ```{r message=FALSE} data("gene.de.rawEx") print(head(gene.de.rawEx)) data("met.de.rawEx") print(head(met.de.rawEx)) ``` Next we will load example network related objects: global reaction network (`networkEx` object), metabolite annotations (`met.kegg.dbEx`), and organism-specific enzyme annotations for mouse (`org.Mm.eg.gatom.annoEx`). ```{r} data("networkEx") data("met.kegg.dbEx") data("org.Mm.eg.gatom.annoEx") ``` Here `networkEx` object contain information about `r nrow(networkEx$reactions)` KEGG reactions, their atom mappings and relation to enzymes: ```{r} str(networkEx, max.level=1, give.attr = FALSE) ``` Object `met.kegg.dbEx` contains information about `r nrow(met.kegg.dbEx$metabolites)` KEGG metabolites, including mappings from HMDB and ChEBI: ```{r} str(met.kegg.dbEx, max.level=2, give.attr = FALSE) ``` Object `org.Mm.eg.gatom.annoEx` contains mouse-specific mapping between enzyme classes and genes, as well as mapping between different types of gene identifiers: ```{r} str(org.Mm.eg.gatom.annoEx, max.level=2, give.attr = FALSE) ``` Then we create a metabolic graph with atom topology from the loaded data. Depending on `topology` parameter, the graph vertices can correspond either to `atoms` or `metabolites`. For metabolite topology, see [Using metabolite-level network](#met-topology) section. ```{r} g <- makeMetabolicGraph(network=networkEx, topology="atoms", org.gatom.anno=org.Mm.eg.gatom.annoEx, gene.de=gene.de.rawEx, met.db=met.kegg.dbEx, met.de=met.de.rawEx) print(g) ``` After creating the metabolic graph, we then score it, obtaining an instance of Signal Generalized Maximum Weight Subgraph (SGMWCS) problem. The size of the module can be controlled by changing scoring parameters `k.gene` and `k.met`. The higher the values of scoring parameters are, the bigger the module is going to be. ```{r message=FALSE, warning=FALSE} gs <- scoreGraph(g, k.gene = 25, k.met = 25) ``` Then we initialize an SMGWCS solver. Here, we use a heuristic relax-and-cut solver `rnc_solver` for simplicity. See `mwcsr` package documentation for more solver options, or [Using exact solver](#exact-solver) section for the recommended way. ```{r} solver <- rnc_solver() ``` Then we find an active metabolic module with chosen solver and scored graph: ```{r message=FALSE, warning=FALSE} set.seed(42) res <- solve_mwcsp(solver, gs) m <- res$graph ``` The result module is an `igraph` object that captures the most regulated reactions: ```{r} print(m) head(E(m)$label) head(V(m)$label) ``` The module can be plotted in R Viewer with `createShinyCyJSWidget()`. Here, red color corresponds to up-regulation (positive log-2 fold change) and green to down-regulation (negative log-2 fold change). Blue nodes and edges come from data with absent log-2 fold change values. Bigger size of nodes and width of edges reflect lower p-values. ```{r} createShinyCyJSWidget(m) ``` # Saving modules We can save the module to graphml format with `write_graph()` function from `igraph`: ```{r} write_graph(m, file = file.path(tempdir(), "M0.vs.M1.graphml"), format = "graphml") ``` Or it can be saved to an interactive html widget: ```{r message=FALSE} saveModuleToHtml(module = m, file = file.path(tempdir(), "M0.vs.M1.html"), name="M0.vs.M1") ``` We can also save the module to dot format: ```{r} saveModuleToDot(m, file = file.path(tempdir(), "M0.vs.M1.dot"), name = "M0.vs.M1") ``` Such dot file can be further used to generate svg file using `neato` tool from graphviz suite if it is installed on the system: ```{r eval=FALSE} system(paste0("neato -Tsvg ", file.path(tempdir(), "M0.vs.M1.dot"), " > ", file.path(tempdir(), "M0.vs.M1.svg")), ignore.stderr=TRUE) ``` Alternatively, the module can be saved to pdf format with a nice layout. You may vary the meaning of repel force and the number of iterations of repel algorithm for label layout. Note, that the larger your graph is the softer force you should use. You may also set different seed for different variants of edge layout with `set.seed()`. ```{r results="hide", message=FALSE, warning=FALSE} set.seed(42) saveModuleToPdf(m, file = file.path(tempdir(), "M0.vs.M1.pdf"), name = "M0.vs.M1", n_iter=100, force=1e-5) ``` # Example on full data and full network {#example-full} Let's now look at how the analysis will work with the full dataset and the full network. For this case we will be using the combined network instead of KEGG network (see [Networks](#networks) for details on the network types). ```{r message=FALSE} library(R.utils) library(data.table) ``` The full macrophage LPS+IFNG-activation dataset can be downloaded from [http://artyomovlab.wustl.edu/publications/supp_materials/GAM/](http://artyomovlab.wustl.edu/publications/supp_materials/GAM/): ```{r message=FALSE} met.de.raw <- fread("http://artyomovlab.wustl.edu/publications/supp_materials/GAM/Ctrl.vs.MandLPSandIFNg.met.de.tsv.gz") gene.de.raw <- fread("http://artyomovlab.wustl.edu/publications/supp_materials/GAM/Ctrl.vs.MandLPSandIFNg.gene.de.tsv.gz") ``` Full pre-generated combined network, corresponding metabolite annotation, and enzyme annotation can be downloaded from [http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/](http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/): ```{r} network.combined <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/network.combined.rds")) met.combined.db <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/met.combined.db.rds")) org.Mm.eg.gatom.anno <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/org.Mm.eg.gatom.anno.rds")) ``` For better work of the combined network we highly recommend using additional supplementary gene files (see [Supplementary Genes](#suppl-genes)). ```{r} gene2reaction.extra <- fread("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/gene2reaction.combined.mmu.eg.tsv", colClasses="character") ``` Running `gatom` on the combined network and the full dataset: ```{r} cg <- makeMetabolicGraph(network=network.combined, topology="atoms", org.gatom.anno=org.Mm.eg.gatom.anno, gene.de=gene.de.raw, met.db=met.combined.db, met.de=met.de.raw, gene2reaction.extra=gene2reaction.extra) cgs <- scoreGraph(cg, k.gene = 50, k.met = 50) solver <- rnc_solver() set.seed(42) sol <- solve_mwcsp(solver, cgs) cm <- sol$graph cm ``` The result module for combined network: ```{r message=FALSE, warning=FALSE} createShinyCyJSWidget(cm) ``` # Networks {#networks} We provide four types of networks that can be used for analysis: 1. KEGG network 2. Rhea network 3. Combined network 4. Rhea lipid subnetwork ## KEGG {#kegg-network} KEGG network consists of `network.kegg.rds` & `met.kegg.db.rds` files and is based on [KEGG database](https://www.genome.jp/kegg/kegg1.html). Both metabolites and reactions in KEGG network have KEGG IDs. This network was generated with the pipeline available [here](https://github.com/ctlab/KEGG-network-pipeline). For extra details on KEGG network you can also reference [shinyGatom](https://doi.org/10.1093/nar/gkac427) and [GAM](https://doi.org/10.1093/nar/gkw266) articles. ```{r} network <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/network.kegg.rds")) met.db <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/met.kegg.db.rds")) ``` Running `gatom` with KEGG network on full dataset: ```{r} kg <- makeMetabolicGraph(network=network, topology="atoms", org.gatom.anno=org.Mm.eg.gatom.anno, gene.de=gene.de.raw, met.db=met.db, met.de=met.de.raw) kgs <- scoreGraph(kg, k.gene = 50, k.met = 50) solver <- rnc_solver() set.seed(42) sol <- solve_mwcsp(solver, kgs) km <- sol$graph km ``` ```{r message=FALSE, warning=FALSE} createShinyCyJSWidget(km) ``` ## Rhea Rhea network consists of `network.rhea.rds` & `met.rhea.db.rds` files and is based on [Rhea database](https://www.rhea-db.org/). Reactions in Rhea have their own IDs, but unlike KEGG, metabolite IDs come from a separate database -- [ChEBI database](https://www.ebi.ac.uk/chebi/). This network was generated with the pipeline available [here](https://github.com/ctlab/Rhea-network-pipeline). For extra details on Rhea network you can also reference [shinyGatom](https://doi.org/10.1093/nar/gkac427) article. To use Rhea network download the following files: ```{r} network.rhea <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/network.rhea.rds")) met.rhea.db <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/met.rhea.db.rds")) ``` For proper work of the Rhea network we also need a corresponding supplementary gene file (ref. [Supplementary Genes](#suppl-genes)). ```{r} gene2reaction.extra <- fread("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/gene2reaction.rhea.mmu.eg.tsv", colClasses="character") ``` And run `gatom` on Rhea network: ```{r} rg <- makeMetabolicGraph(network=network.rhea, topology="atoms", org.gatom.anno=org.Mm.eg.gatom.anno, gene.de=gene.de.raw, met.db=met.rhea.db, met.de=met.de.raw, gene2reaction.extra=gene2reaction.extra) rgs <- scoreGraph(rg, k.gene = 50, k.met = 50) solver <- rnc_solver() set.seed(42) sol <- solve_mwcsp(solver, rgs) rm <- sol$graph rm ``` Result Rhea network module: ```{r message=FALSE, warning=FALSE} createShinyCyJSWidget(rm) ``` ## Combined network Combined network comprises not only KEGG and Rhea reactions, but also transport reactions from [BIGG database](http://bigg.ucsd.edu/). This means that reactions in such network have either KEGG or Rhea or BIGG IDs, and metabolite IDs are KEGGs and ChEBIs. ## Rhea lipid subnetwork Rhea lipid subnetwork is subset of Rhea reactions that involve lipids, and it consists of `network.rhea.lipids.rds` & `met.rhea.lipids.db.rds` files. This network was generated with the pipeline available [here](https://github.com/ctlab/Rhea-network-pipeline). For extra details on Rhea lipid subnetwork you can also reference [shinyGatom](https://doi.org/10.1093/nar/gkac427) article. ```{r} network.lipids <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/network.rhea.lipids.rds")) met.lipids.db <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/met.lipids.db.rds")) ``` For proper work of the lipid network we will also need a corresponding supplementary gene file (ref. [Supplementary Genes](#suppl-genes)) ```{r} gene2reaction.extra <- fread("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/gene2reaction.rhea.mmu.eg.tsv", colClasses="character") ``` To test lipid network we will use example lipidomics data for WT mice control vs high fat diet comparison from [ST001289 dataset](https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&StudyID=ST001289). ```{r} met.de.lipids <- fread("https://artyomovlab.wustl.edu/publications/supp_materials/GATOM/Ctrl.vs.HighFat.lipid.de.csv") ``` For lipid network we recommend setting topology to `metabolites` (ref. [Using metabolite-level network](#met-topology)): ```{r} lg <- makeMetabolicGraph(network=network.lipids, topology="metabolites", org.gatom.anno=org.Mm.eg.gatom.anno, gene.de=NULL, met.db=met.lipids.db, met.de=met.de.lipids, gene2reaction.extra=gene2reaction.extra) lgs <- scoreGraph(lg, k.gene = NULL, k.met = 50) solver <- rnc_solver() set.seed(42) sol <- solve_mwcsp(solver, lgs) lm <- sol$graph lm ``` Result lipid subnetwork module: ```{r message=FALSE, warning=FALSE} createShinyCyJSWidget(lm) ``` If IDs for metabolite differential abundance data are of type `Species` we can process metabolite labels into more readable ones: ```{r message=FALSE, warning=FALSE} lm1 <- abbreviateLabels(lm, orig.names = TRUE, abbrev.names = TRUE) createShinyCyJSWidget(lm1) ``` # Misc ## Supplementary gene files {#suppl-genes} For combined, Rhea and lipid networks we provide supplementary files with genes that either come from proteome or are not linked to a specific enzyme. These files are organism-specific and are also available at [http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/](http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/). ```{r} network.combined <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/network.combined.rds")) met.combined.db <- readRDS(url("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/met.combined.db.rds")) gene2reaction.extra <- fread("http://artyomovlab.wustl.edu/publications/supp_materials/GATOM/gene2reaction.combined.mmu.eg.tsv", colClasses="character") gg <- makeMetabolicGraph(network=network.combined, topology="atoms", org.gatom.anno=org.Mm.eg.gatom.anno, gene.de=gene.de.raw, met.db=met.combined.db, met.de=met.de.raw, gene2reaction.extra=gene2reaction.extra) gg ``` ## Non-enzymatic reactions Optionally, we can also preserve non-enzymatic reactions that are found in the network. This can be done by setting `keepReactionsWithoutEnzymes` to `TRUE`: ```{r} ge <- makeMetabolicGraph(network=network.combined, topology="atoms", org.gatom.anno=org.Mm.eg.gatom.anno, gene.de=gene.de.raw, met.db=met.combined.db, met.de=met.de.raw, gene2reaction.extra=gene2reaction.extra, keepReactionsWithoutEnzymes=TRUE) ge ``` ## Using exact solver {#exact-solver} For proper analysis quality we recommend to use exact SGMWCS solver `virgo_solver()`, which requires Java (version >= 11) and CPLEX (version >= 12.7) to be installed. If the requirements are met you can then find a module as following: ```{r eval=FALSE} vsolver <- virgo_solver(cplex_dir=Sys.getenv("CPLEX_HOME"), threads=4, penalty=0.001, log=1) sol <- solve_mwcsp(vsolver, gs) m <- sol$graph ``` Edge penalty option there is used to remove excessive redundancy in genes. ## Running with no metabolite data If there is no metabolite data in your experiment assign `met.de` and `k.met` to `NULL`: ```{r} g <- makeMetabolicGraph(network=networkEx, topology="atoms", org.gatom.anno=org.Mm.eg.gatom.annoEx, gene.de=gene.de.rawEx, met.db=met.kegg.dbEx, met.de=NULL) gs <- scoreGraph(g, k.gene = 50, k.met = NULL) ``` ## Running with no gene data If there is no gene data in your experiment assign `gene.de` and `k.gene` to `NULL`: ```{r} g <- makeMetabolicGraph(network=networkEx, topology="atoms", org.gatom.anno=org.Mm.eg.gatom.annoEx, gene.de=NULL, met.db=met.kegg.dbEx, met.de=met.de.rawEx) gs <- scoreGraph(g, k.gene = NULL, k.met = 50) ``` ## Using metabolite-level network {#met-topology} Sometimes it could make sense to work with metabolite-metabolite topology of the network, not atom-atom one. Such network is less structured, but contains more genes. ```{r} gm <- makeMetabolicGraph(network=network, topology="metabolite", org.gatom.anno=org.Mm.eg.gatom.anno, gene.de=gene.de.raw, met.db=met.db, met.de=met.de.raw) gms <- scoreGraph(gm, k.gene = 50, k.met = 50) solver <- rnc_solver() set.seed(42) sol <- solve_mwcsp(solver, gms) mm <- sol$graph mm ``` ## Pathway annotation To get functional annotation of obtained modules by KEGG and Reactome metabolic pathways, we can use hypergeometric test with `fora()` function from `fgsea` package. ```{r} foraRes <- fgsea::fora(pathways=org.Mm.eg.gatom.anno$pathways, genes=E(km)$gene, universe=unique(E(kg)$gene), minSize=5) foraRes[padj < 0.05] ``` Optionally, redundancy in pathways can be decreased with `collapsePathwaysORA()` function: ```{r} mainPathways <- fgsea::collapsePathwaysORA( foraRes[padj < 0.05], pathways=org.Mm.eg.gatom.anno$pathways, genes=E(km)$gene, universe=unique(E(kg)$gene)) foraRes[pathway %in% mainPathways$mainPathways] ``` ```{r} sessionInfo() ```