--- title: "Large-scale single-cell RNA-seq data manipulation with GDS files" author: "Dr. Xiuwen Zheng (Genomics Research Center, AbbVie)" date: "Jan 2023" output: html_document: theme: default highlight: tango toc: yes vignette: > %\VignetteIndexEntry{Single-cell RNA-seq data manipulation using GDS files} %\VignetteKeywords{scRNAseq, GDS} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r echo=FALSE} options(width=110) ``` ~ ~ ## Introduction The SCArray package provides large-scale single-cell RNA-seq data manipulation using Genomic Data Structure ([GDS](http://www.bioconductor.org/packages/gdsfmt)) files. It combines dense/sparse matrices stored in GDS files and the Bioconductor infrastructure framework ([SingleCellExperiment](http://www.bioconductor.org/packages/SingleCellExperiment) and [DelayedArray](http://www.bioconductor.org/packages/DelayedArray)) to provide out-of-memory data storage and manipulation using the R programming language. As shown in the figure, SCArray provides a `SingleCellExperiment` object for downstream data analyses. GDS is an alternative to HDF5. Unlike HDF5, GDS supports the direct storage of a sparse matrix without converting it to multiple vectors. ![**Figure 1**: Workflow of SCArray](scarray_fig.svg) ~ ~ ## Installation * Requires R (>= v3.5.0), [gdsfmt](http://www.bioconductor.org/packages/gdsfmt) (>= v1.35.4) * Bioconductor repository To install this package, start R and enter: ```{R, eval=FALSE} if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("SCArray") ``` ~ ~ ## Format conversion ### Conversion from SingleCellExperiment The SCArray package can convert a single-cell experiment object (SingleCellExperiment) to a GDS file using the function `scConvGDS()`. For example, ```{r} suppressPackageStartupMessages(library(SCArray)) suppressPackageStartupMessages(library(SingleCellExperiment)) # load a SingleCellExperiment object fn <- system.file("extdata", "example.rds", package="SCArray") sce <- readRDS(fn) # convert to a GDS file scConvGDS(sce, "test.gds") # list data structure in the GDS file (f <- scOpen("test.gds")) scClose(f) ``` ### Conversion from a matrix The input of `scConvGDS()` can be a dense or sparse matrix for count data: ```{r} library(Matrix) cnt <- matrix(0, nrow=4, ncol=8) set.seed(100); cnt[sample.int(length(cnt), 8)] <- rpois(8, 4) (cnt <- as(cnt, "sparseMatrix")) # convert to a GDS file scConvGDS(cnt, "test.gds") ``` ~ ~ ## Examples When a single-cell GDS file is available, users can use `scExperiment()` to load a SingleCellExperiment object from the GDS file. The assay data in the SingleCellExperiment object are DelayedMatrix objects. ```{r} # a GDS file in the SCArray package (fn <- system.file("extdata", "example.gds", package="SCArray")) # load a SingleCellExperiment object from the file sce <- scExperiment(fn) sce # it is a DelayedMatrix (the whole matrix is not loaded) assays(sce)$counts # column data colData(sce) # row data rowData(sce) ``` ~ ~ ## Data Manipulation and Analysis SCArray provides a `SingleCellExperiment` object for downstream data analyses. At first, we create a log count matrix `logcnt` from the count matrix. Note that `logcnt` is also a DelayedMatrix without actually generating the whole matrix. ```{r} cnt <- assays(sce)$counts logcnt <- log2(cnt + 1) logcnt ``` **Formally**, we call `logNormCounts()` in the scuttle package to normalize the raw counts. ```{r} suppressPackageStartupMessages(library(scuttle)) sce <- logNormCounts(sce) logcounts(sce) ``` ### 1. Row and Column Summarization The [DelayedMatrixStats](http://www.bioconductor.org/packages/DelayedMatrixStats) package provides summarization functions operating on rows and columns of DelayedMatrix objects. SCArray has provided the optimized implementations for the row and column summarization. For example, we can calculate the mean for each column or row of the log count matrix. ```{r} col_mean <- colMeans(logcnt) str(col_mean) row_mean <- rowMeans(logcnt) str(row_mean) # calculate the mean and variance at the same time mvar <- scRowMeanVar(logcnt) head(mvar) ``` ### 2. PCA analysis The [scater](http://www.bioconductor.org/packages/scater) package can perform the Principal component analysis (PCA) on the normalized cell data. ```{r} suppressPackageStartupMessages(library(scater)) # run umap analysis sce <- runPCA(sce) ``` `scater::runPCA()` will call the function `beachmat::realizeFileBackedMatrix()` internally to realize a scaled and centered DelayedMatrix into its corresponding in-memory format, so it is memory-intensive for large-scale PCA. **Instead**, the SCArray package provides `scRunPCA()` for reducing the memory usage in large-scale PCA by perform SVD on the relatively small covariance matrix. ```{r} sce <- scRunPCA(sce) ``` `plotReducedDim()` plots cell-level reduced dimension results (PCA) stored in the SingleCellExperiment object: ```{r fig.align="center",fig.width=4,fig.height=3} plotReducedDim(sce, dimred="PCA") ``` ### 3. UMAP analysis The [scater](http://www.bioconductor.org/packages/scater) package can perform the uniform manifold approximation and projection (UMAP) for the cell data, based on the data in a SingleCellExperiment object. ```{r} suppressPackageStartupMessages(library(scater)) # run umap analysis sce <- runUMAP(sce) ``` `plotReducedDim()` plots cell-level reduced dimension results (UMAP) stored in the SingleCellExperiment object: ```{r fig.align="center",fig.width=4,fig.height=3} plotReducedDim(sce, dimred="UMAP") ``` ~ ~ ## Miscellaneous ### Debugging `options(SCArray.verbose=TRUE)` is used to enable displaying debug information when calling the functions in the SCArray packages. For example, ```{r} options(SCArray.verbose=TRUE) m <- rowMeans(logcnt) str(m) ``` ~ ~ ## Session Information ```{r} # print version information about R, the OS and attached or loaded packages sessionInfo() ``` ```{r echo=FALSE} unlink("test.gds", force=TRUE) ```