Welcome to RiboCrypt
RiboCrypt
is an R package for interactive visualization in genomics. RiboCrypt
works with any NGS-based method, but much emphasis is put on Ribo-seq data visualization.
This tutorial will walk you through usage of the app.
RibCrypt
app currently supports creating interactive browser views for NGS tracks, using
ORFik, Ribocrypt and massiveNGSpipe as backend.
The browser is the main coverage plot display page. It contains a click panel on the left side and display panels on the right. It displays coverage of NGS data in either transcript coordinates (default), or genomic coordinates (like IGV). Each part will now be explained:
The display panel shows the primary settings, (study, gene, sample, etc), the possible select boxes are:
Each experiment usually have multiple libraries. Select which one to display, by default if you select multiple libraries they will be shown under each other.
Library are by default named:
The resuting name above could be:
A normal thing to see is that if condition is KO (knockout), the fraction column usually contains a gene name (the name of the gene that was knocked out) Currently, best way to find SRR run number for respective sample is to go to metadata tab and search for the study.
Here additional options are shown:
From the options specified in the display panel, when you press “plot” the data will be displayed. It contains the specific parts:
Here we collect the analysis possibilities, which are usually on whole genome scale.
This tab displays a heatmap of percentage usage of codons over all genes selected, for both A and P sites.
Study and gene select works same as for browser specified above. In addition to have the option to specify all genes (default). - Select libraries (multiple allowed)
This tab displays a heatmap of coverage per readlength at a specific region (like start site of coding sequences) over all genes selected.
Study and gene select works same as for browser specified above. In addition to have the option to specify all genes (default).
Here additional options are shown:
5’ extension (extend viewed window upstream from point, default 30)
3’ extension (extend viewed window downstreamfrom point, default 30)
Extension works like this, first extend to transcript coordinates.
After gene end extend in genomic coordinates
If chromosome boundary is reached, remove those genes from the full set.
This tab displays a QC of pshifted coverage per readlength (like start site of coding sequences) over all genes selected.
The display panel shows what can be specified to display, the possible select boxes are same as for heatmap above:
From the options specified in the display panel, when you press “plot” the data will be displayed. It contains the specific parts:
Top plot: Read length relative usage 1. Y-axis: Score 3. Color: Per frame (red, green, blue) 4. Facet box: the read length
Bottom plot: Fourier transform (3nt periodicity quality, clean peak means good periodicity)
This tab displays the fastq QC output from fastp, as a html page.
The display panel shows what can be specified to display, you can select from organism, study and library.
Displays the html page.
Metadata tab displays information about studies.
Here you input a study accession number in the form of either:
On top the abstract of the study is displayed, and on bottom a table of all metadata found from the study is displayed.
For our webpage the processing pipeline used is massiveNGSpipe which wraps over multiple tools:
If you’re not familiar with terms like “p-shifting” or “p-site offset”, it’s best to walk through ORFikOverview vignette, especially chapter 6 “RiboSeq footprints automatic shift detection and shifting”
This app is created as a collaboration with:
Main authors and contact: