--- title: "Utilizing Mechanism-Aware Imputation (MAI)" author: - name: Jonathan Dekermanjian email: Jonathan.Dekermanjian@CUAnschutz.edu affiliation: University of Colorado Anschutz Medical Campus - name: Elin Shaddox email: Elin.Shaddox@CUAnschutz.edu affiliation: University of Colorado Anschutz Medical Campus - name: Debmalya Nandy email: Debmalya.Nandy@CUAnschutz.edu affiliation: University of Colorado Anschutz Medical Campus - name: Debashis Ghosh email: Debashis.Ghosh@CUAnschutz.edu affiliation: University of Colorado Anschutz Medical Campus - name: Katerina Kechris email: Katerina.Kechris@CUAnschutz.edu affiliation: University of Colorado Anschutz Medical Campus package: MAI output: BiocStyle::html_document: highlight: "tango" code_folding: show toc: true toc_float: collapsed: false date: "7/21/2021" vignette: > %\VignetteIndexEntry{Utilizing Mechanism-Aware Imputation (MAI)} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` # Introduction A two-step approach to imputing missing data in metabolomics. Step 1 uses a random forest classifier to classify missing values as either Missing Completely at Random/Missing At Random (MCAR/MAR) or Missing Not At Random (MNAR). MCAR/MAR are combined because it is often difficult to distinguish these two missing types in metabolomics data. Step 2 imputes the missing values based on the classified missing mechanisms, using the appropriate imputation algorithms. Imputation algorithms tested and available for MCAR/MAR include Bayesian Principal Component Analysis (BPCA), Multiple Imputation No-Skip K-Nearest Neighbors (Multi_nsKNN), and Random Forest. Imputation algorithms tested and available for MNAR include nsKNN and a single imputation approach for imputation of metabolites where left-censoring is present. # Installation The following code chunk depicts how to install MAI from Bioconductor ```{r, eval=FALSE} if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("MAI") ``` # Using MAI when your data is a data.frame or matrix ```{r} # Load the MAI package library(MAI) # Load the example data with missing values data("untargeted_LCMS_data") # Set a seed for reproducibility ## Estimating pattern of missingness involves imposing MCAR/MAR into the data ## these are done at random and as such may slightly change the results of the ## estimated parameters. set.seed(137690) # Impute the data using BPCA for predicted MCAR value imputation and # use Single imputation for predicted MNAR value imputation Results = MAI(data_miss = untargeted_LCMS_data, # The data with missing values MCAR_algorithm = "BPCA", # The MCAR algorithm to use MNAR_algorithm = "Single", # The MNAR algorithm to use assay_ix = 1, # If SE, designates the assay to impute forest_list_args = list( # random forest arguments for training ntree = 300, proximity = FALSE ), verbose = TRUE # allows console message output ) # Get MAI imputations Results[["Imputed_data"]][1:5, 1:5] # show only 5x5 ``` ```{r} # Get the estimated mixed missingness parameters Results[["Estimated_Params"]] ``` These parameters estimate the ratio of MCAR/MAR to MNAR in the data. The parameters $\alpha$ and $\beta$ separate high, medium, and low average abundance metabolites, while the parameter $\gamma$ is used to impose missingness in the medium and low abundance metabolites. A smaller $\alpha$ corresponds to more MCAR/MAR being present, while larger $\beta$ and $\gamma$ values imply more MNAR values being present. The returned estimated parameters are then used to impose known missingness in the complete subset of the input data. Subsequently, a random forest classifier is trained to classify the known missingness in the complete subset of the input data. Once the classifier is established it is applied to the unknown missingness of the full input data to predict the missingness. Finally, the missing values are imputed using a specific algorithm, chosen by the user, according to the predicted missingness mechanism. # Using MAI when your data is a SummarizedExperiment (SE) class ```{r} # Load the SummarizedExperiment package suppressMessages( library(SummarizedExperiment) ) # Load the example data with missing values data("untargeted_LCMS_data") # Turn the data to a SummarizedExperiment se = SummarizedExperiment(untargeted_LCMS_data) # Set a seed for reproducibility ## Estimating pattern of missingness involves imposing MCAR/MAR into the data ## these are done at random and as such may slightly change the results of the ## estimated parameters. set.seed(137690) # Impute the data using BPCA for predicted MCAR value imputation and # use Single imputation for predicted MNAR value imputation Results = MAI(se, # The data with missing values MCAR_algorithm = "BPCA", # The MCAR algorithm to use MNAR_algorithm= "Single", # The MNAR algorithm to use assay_ix = 1, # If SE, designates the assay to impute forest_list_args = list( # random forest arguments for training ntree = 300, proximity = FALSE ), verbose = TRUE # allows console message output ) # Get MAI imputations assay(Results)[1:5, 1:5] # show only 5x5 ``` ```{r} # Get the estimated mixed missingness parameters metadata(Results)[["meta_assay_1"]][["Estimated_Params"]] ``` # Session Information ```{r} sessionInfo() ``` # References Dekermanjian, J.P., Shaddox, E., Nandy, D. et al. Mechanism-aware imputation: a two-step approach in handling missing values in metabolomics. BMC Bioinformatics 23, 179 (2022). https://doi.org/10.1186/s12859-022-04659-1