--- title: "scClassify Model Building and Prediction" author: - name: Yingxin Lin affiliation: - School of Mathematics and Statistics, The University of Sydney, Australia - Charles Perkins Centre, The University of Sydney, Australia date: "`r BiocStyle::doc_date()`" output: BiocStyle::html_document: toc: true toc_float: true vignette: > %\VignetteIndexEntry{scClassify} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, comment = "#>" ) ``` # Introduction A common application of single-cell RNA sequencing (RNA-seq) data is to identify discrete cell types. To take advantage of the large collection of well-annotated scRNA-seq datasets, `scClassify` package implements a set of methods to perform accurate cell type classification based on *ensemble learning* and *sample size calculation*. This vignette demonstrates the usage of `scClassify`, providing a pithy description of each method with workable examples. First, install `scClassify` via `BiocManager`. ```{r eval = FALSE} # installation of scClassify if (!requireNamespace("BiocManager", quietly = TRUE)) { install.packages("BiocManager") } BiocManager::install("scClassify") ``` # Setting up the data We assume that you have *log-transformed* (size-factor normalized) matrices where each row is a gene and each column a cell for a reference dataset and a query dataset. For demonstration purposes, we will take a subset of single-cell pancreas datasets from two independent studies (Wang et al., and Xin et al.). ```{r setup} library("scClassify") data("scClassify_example") xin_cellTypes <- scClassify_example$xin_cellTypes exprsMat_xin_subset <- scClassify_example$exprsMat_xin_subset wang_cellTypes <- scClassify_example$wang_cellTypes exprsMat_wang_subset <- scClassify_example$exprsMat_wang_subset exprsMat_xin_subset <- as(exprsMat_xin_subset, "dgCMatrix") exprsMat_wang_subset <- as(exprsMat_wang_subset, "dgCMatrix") ``` The original cell type annotations and compositions of the example datasets can be easily accessed as shown below. ```{r} table(xin_cellTypes) table(wang_cellTypes) ``` We can see that Xin et al. data only have 4 cell types, while Wang et al. has 7 cell types. # scClassify ## Non-ensemble scClassify We first perform non-ensemble `scClassify` by using Xin et al. as our reference dataset and Wang et al. data as ur query data. We use `WKNN` as the KNN algorithm, `DE` (differential expression genes) as the gene selection method, and lastly `pearson` as the similarity calculation method. ```{r} scClassify_res <- scClassify(exprsMat_train = exprsMat_xin_subset, cellTypes_train = xin_cellTypes, exprsMat_test = list(wang = exprsMat_wang_subset), cellTypes_test = list(wang = wang_cellTypes), tree = "HOPACH", algorithm = "WKNN", selectFeatures = c("limma"), similarity = c("pearson"), returnList = FALSE, verbose = FALSE) ``` We can check the cell type tree generated by the reference data: ```{r warning=FALSE} scClassify_res$trainRes plotCellTypeTree(cellTypeTree(scClassify_res$trainRes)) ``` Noted that `scClassify_res$trainRes` is a `scClassifyTrainModel` class. Check the prediction results. ```{r} table(scClassify_res$testRes$wang$pearson_WKNN_limma$predRes, wang_cellTypes) ``` ## Ensemble Classify We next perform ensemble `scClassify` by using Xin et al. as our reference dataset and Wang et al. data as our query data. We use `WKNN` as the KNN algorithm, `DE` as the gene selection method, and `pearson` and `spearman` as the similarity calculation methods. Thus, we will generate two combinations of gene selection models and similarity metrics as training classifiers: 1. `WKNN` + `DE` + `pearson` 2. `WKNN` + `DE` + `spearman` Here, we will weight these two classifiers equally by setting `weighted_ensemble = FALSE`. By default this is set as `TRUE`, so each base classifier will be weighted by the accuracy rates trained in the reference data. ```{r} scClassify_res_ensemble <- scClassify(exprsMat_train = exprsMat_xin_subset, cellTypes_train = xin_cellTypes, exprsMat_test = list(wang = exprsMat_wang_subset), cellTypes_test = list(wang = wang_cellTypes), tree = "HOPACH", algorithm = "WKNN", selectFeatures = c("limma"), similarity = c("pearson", "cosine"), weighted_ensemble = FALSE, returnList = FALSE, verbose = FALSE) ``` We can compare the two base classifiers predictions as below. ```{r} table(scClassify_res_ensemble$testRes$wang$pearson_WKNN_limma$predRes, scClassify_res_ensemble$testRes$wang$cosine_WKNN_limma$predRes) ``` Now, check the final ensemble results: ```{r} table(scClassify_res_ensemble$testRes$wang$ensembleRes$cellTypes, wang_cellTypes) ``` # Train your own model You can also train your own model `scClassifyTrainModel` using `train_scClassify()`. Note that by setting `weightsCal = TRUE`, we will calculate the training error of the reference data as the weights for the individual classifiers. Here, we illustrate the training function with gene selection methods based on differential expression ("limma") and biomodal distribution ("BI"). ```{r} trainClass <- train_scClassify(exprsMat_train = exprsMat_xin_subset, cellTypes_train = xin_cellTypes, selectFeatures = c("limma", "BI"), returnList = FALSE ) ``` ```{r} trainClass ``` # Session Info ```{r} sessionInfo() ```